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EARTHQUAKE DAMAGE
MINOR AT THE NATURAL
RESOURCES BUILDING

Dorian Smith

Washington State Department of Natural Resources

Communications Product Development

PO Box 47040; Olympia, WA 98504-7040

“The building performed as it was designed to,” said Jim Hurst,
Engineering Division Manager, about the Natural Resources
Building (NRB) during the Feb. 28 Nisqually earthquake. “The
cracks we see are intentional, and dust from the ductwork is
perfectly normal. The building was designed to sway and ab-
sorb ground shock, rather than fight it.”

“A rigid structure is brittle and would likely fail under the
ground movement from a large earthquake,” Hurst said. “In-
stead, the NRB was engineered to be flexible enough to with-
stand an earthquake much larger than the Nisqually quake.”

Comparing the building to a whipping antenna, he said the
lower floors moved much less than the top floors. This would
explain the increase in workspace damage on the upper floors
during the 40-second shake.

Hurst said the largest portion of the repairs will be covering
superficial cracks. “Most of our work will be spackle and
paint,” he said.

The escalator that connects the P2 parking garage level to
the first floor was closed because it “shifted a little”. The stair-
wells were closed—not for safety reasons—but to restrict ac-
cess to the building. Employees who re-entered the NRB on
Friday after the quake were instructed to use the elevators,
which were activated by identification cards. The cards are
programmed to limit staff to the floor of their agency.

Although damage to state-owned properties has been esti-
mated at $250 million, DNR’s claims will reach only about
$280,000, said Jim Smego, DNR’s risk manager. Most of the
cost ($180,000) was for staff time for 2.5 days of debris clean-
up and restoration of services, primarily at the NRB.

Smego reported that seven DNR road segments had damage
estimated at $35,200. A total of 24 building sites had damage
estimated at $65,100, which includes $15,500 in damages to
computer hardware in the NRB.

According to Dennis Flynn, project manager/civil engi-
neer, the NRB was inspected just after the earthquake on Feb.
28, and there was a detailed inspection the next day. On March
9 and 10, there was a thorough engineering evaluation by Ser-
geant Engineers with the assistance of General Administration
and DNR engineers.

There was no significant damage to the building or parking
garage. There were 13 broken or cracked windows in the ro-
tunda and cracks in the sheetrock around many windows in the
building. Some ceramic tiles came loose in restrooms. Also,
there were several places in the building where access floors
shifted where they transitioned to solid floors. �
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Surviving the Nisqually Earthquake

Raymond Lasmanis, State Geologist

Washington Division of Geology and Earth Resources

PO Box 47007; Olympia, WA 98504-7007

At 10:54:32 (PST) on Wednesday, February 28, 2001, a
magnitude 6.8 Benioff zone earthquake shook southern

Puget Sound. The earthquake was centered at 47.1525N,
122.7197W at a depth of 52.4 km. The epicenter, located adja-
cent to the Nisqually River delta, was at the same location as
the magnitude 7.1 earthquake on April 29, 1945. The state cap-
ital, Olympia, is located 18 km (11 mi) from the epicenter. Af-
tershocks followed on March 1st, with a 3.4 magnitude earth-
quake at 1:10 a.m. followed by a 2.7 magnitude earthquake at
6:23 a.m.

The state offices, in general, and the Department of Natural
Resources, in particular, were well prepared for the earth-
quake. We have had a number of earthquake drills and diving
under one’s desk came naturally. But waiting for the shaking to
stop was a scary 45-second experience, particularly for those
on the higher floors. And the power went out shortly after the
shaking started, leaving some of us in the dark for interminable
seconds until the emergency lights came on. Evacuation of the
Natural Resources Building (NRB) proceeded smoothly, al-
though more detailed plans will have to be developed on trans-
portation logistics for employees if entry back into the building
or parking garage is prohibited. Within 5 minutes of the evacu-
ation, Tim Walsh, Pat Pringle, and Bill Lingley were dis-
patched to the State Emergency Operations Center (EOC) at
Camp Murray to assist with emergency response and informa-
tion transfer (see related story, p. 6).

After the earthquake, the department activated the Emer-
gency Management Plan created during 1996 and 1997. As per
the plan, notification procedures were initiated February 28,
the Executive Emergency Management Team was formed,

and, since the NRB was yellow-tagged, a meeting was called in
a pre-designated off-site location the morning of March 1 to es-
tablish the department’s Emergency Coordination Center.
From there, using the incident command system, response was
directed to ensure employee safety, assessment of damage, and
business recovery, including the implementation of the Infor-
mation Technology Disaster Recovery Plan. The State Geolo-
gist is part of the damage assessment team, and I was instructed
to enter the closed NRB on March 1 to document all of the non-
structural damage on the first, third, and fourth floors, occu-
pied by the Department of Natural Resources, and the sixth
floor, occupied by another state agency. On Friday, March 2,
power was restored and key staff were permitted to enter the
NRB to begin clean-up operations and prepare for resumption
of business by Monday, March 5.

Non-structural damage was extensive on the sixth floor,
where shaking was severe and no mitigation measures were ap-
plied. Filing cabinets, lateral files, book cases, and unsecured
wall panels were overturned (Figs. 1–5). These were a hazard
to individuals working in cubes and blocked evacuation routes.
Major equipment losses resulted from unsecured computer

Figure 1. Sixth floor cubicle damage. Photo by Dennis Heryford, De-

partment of Natural Resources.

Figure 2. Sixth floor cubicle damage. Photo by Ray Lasmanis.
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monitors and printers. In contrast, the fourth floor showed only
minor non-structural damage due to a 1996 mitigation pro-
gram. The Division of Geology and Earth Resources (DGER),
located on the first floor, sustained little damage. The shaking
was moderate compared to the upper floors and almost every-
thing had been fastened down. We did, however, lose an unse-
cured computer monitor. The Geology Library fared particu-
larly well due to mitigation work done by Eric Schuster on the
bookshelves with overhead and cross bracing. We only lost a
few lighter volumes from the top shelves (Fig. 6). We could tell
the bookshelves had been lifted as a unit because one of the
magazines slid underneath (Fig. 7).

Thirteen of the upper windows in the rotunda were badly
cracked and part of the rotunda was closed to traffic for almost
three months while we waited for replacement safety glass.

During the weeks following the earthquake, DGER project
and full-time geologists fanned out from Olympia to document

Figure 5. Sixth floor cubicle damage. Photo by Jim Blake, Depart-

ment of Natural Resources.

Figure 6. The Geology library came through with minimal damage,

losing books from the top shelf only. That is a casualty from the toy dino-

saur collection in the lower righthand corner. Photo by Ray Lasmanis.

Figure 4. Sixth floor cubicle damage. Photo by Jim Blake, Depart-

ment of Natural Resources.

Figure 3. Sixth floor cubicle damage. Photo by Ray Lasmanis.
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ground deformation features (see Fig. 1, Table 1, p. 7). They
photographed landslides, lateral spreading, and evidence of
liquefaction such as sand boils. They were joined by Walsh,
Pringle, and Lingley upon completion of their duties at the
EOC. Other division staff, including librarians Connie Manson
and Lee Walkling, were busy responding to public inquiries
and answering the numerous questions of employees returning
to work in the NRB.

On March 21, Steve Palmer was invited to present a state-
ment before the Subcommittee on Research, House of Repre-
sentatives Committee on Science, in Washington, DC. His tes-
timony focused on the nature of the Nisqually earthquake, its
effects as observed by our staff and other investigators, the les-
sons learned, and additional work that needs to be undertaken
to understand the earthquake framework of the Pacific North-
west and the application of appropriate mitigation measures.
You will find testimony from the hearing at http://www.house.
gov/science/reshearings.htm, the House of Representatives
Committee On Science website. �

Figure 7. Proof that library shelves were lifted off the floor by the

quake. Photo by Karl Wegmann.

PERSONAL ACCOUNT
Rich Phipps, Environmental Specialist 3,
Regulatory Section, DGER

A little before 11:00 a.m., I went to the post office because
I didn’t want to get stuck in the noon rush. As I pulled out
of the parking lot, heading back to the NRB, my car started
wobbling and shaking like something really expensive was
broken. I pulled over and got out of the car and it was still
shaking. It was an earthquake!

I noticed I was under some power lines and pulled the
car forward. The first wave had passed, and with the sec-
ond wave, the power poles started rocking back and forth,
the tops moving a good 4 feet. I was amazed that all the
power lines stayed attached to the poles.

The road was twisting and waving like Galloping
Gertie. In the crosswalk, a man in a nice business suit,
briefcase in hand, was doing a boogie dance, waving his
arms for balance. It was actually pretty funny!

After the intense shaking stopped, I was still vibrating
and maybe the ground was too. A wind rushed past, blow-
ing the dead leaves along with it. I looked for a safe place
to park the car while I recovered. I chose the parking lot
across the street from the credit union. It turned out that
was a bad choice—it was the staging area for the credit un-
ion and employees started pouring out of the building.

As I got back to the NRB, I realized I was fortunate to
have a vehicle outside the parking garage, since nobody
was allowed back in to get their car. After I checked in with
the division, now all standing on the sidewalk behind the
NRB, I was able to head home for Belfair (by way of
McCleary, because of the landslide on 101). It took me
three hours instead of the usual one hour to get home.

ASCE Infrastructure Report Card
for King and Snohomish Counties

The American Society of Civil Engineers (ASCE), Seattle Sec-
tion, has posted their 2000 Report Card for King and Snoho-
mish County Infrastructure on their website at http://
sections.asce.org/seattle/ITUP/00reportcard.htm. Our public
infrastructure is made up of physical systems that provide es-
sential public services. A functioning infrastructure is vital to
the quality of life, economic vitality, and safety of the citizens
of Washington. Although not specifically designed for the pur-
pose, the report card gives us some idea of how our infrastruc-
ture would fare in a natural disaster, such as an earthquake.

ASCE released its National Report Card for America’s In-
frastructure in March 1998 (http://www.asce.org/reportcard/).
The purpose was to raise public awareness of infrastructure
systems and the need to maintain, rebuild, and expand them,
and to influence citizens and key decision makers to support in-
frastructure renewal.

The Infrastructure/Transportation and Urban Planning
Committee of the Seattle Section of ASCE decided to evaluate
the infrastructure of King and Snohomish counties. As a body,
it saw urgent needs in several infrastructure systems, some ob-
vious to the general public (such as highway capacity) and
some less obvious (such as new drinking water treatment facili-
ties). Categories evaluated were roads, bridges, mass transit,
aviation, schools, drinking water, waste water, dams, solid
waste, and hazardous waste. Each category was evaluated on
the basis of condition and performance, capacity vs. need, and
funding vs. need.

On the whole, the ASCE feels that our local infrastructure
system is reliable and in good condition, but they are worried
that a lack of funding may lead to critical problems.

MISSOULA FLOODS SLIDE SHOW AVAILABLE

A professionally developed slide show on the Missoula
floods, with script, is available from Lake Roosevelt Na-
tional Recreation Area. The set is sold at the cost of dupli-
cating the slides. For more information, call Dan Hand at
(509) 633-9441 x 130.
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Working a Geologic Disaster

Timothy J. Walsh, Patrick T. Pringle, and Stephen P. Palmer

Washington Division of Geology and Earth Resources

PO Box 47007; Olympia, WA 98504-7007

Timothy J. Walsh, Geologist 4,
Environmental Section, DGER

Immediately after the Nisqually earthquake, the Division of
Geology and Earth Resources (DGER) dispatched Bill
Lingley, Pat Pringle, and me to the State Emergency Opera-
tions Center (EOC) at Camp Murray near Tacoma to assist with
emergency response and information
transfer. At the EOC, every state
agency has a desk, a phone, and a com-
puter and is part of a pod or cluster of
four or five desks. Our pod included
representatives from the Departments
of Natural Resources, Ecology, Parks,
and Fisheries.

Tom Pratt, U.S. Geological Survey
(USGS) at the University of Washing-
ton (UW), and I had the job of coordi-
nating field people within the state who
were looking for earthquake damage—
ground failure, liquefaction, etc. We
sent the USGS and UW people north of
Tacoma and the DGER people south
(Figs. 1–14, Table 1). It took a while for
the USGS people from Denver to get
there. At an evaluation meeting at the
UW on Friday night, they agreed to
pitch in where ever they were needed.

Coordinating information gathered
by our field people were Bill Steele
(seismology), Steve Kramer (geotech-
nical), Gregory MacRae (buildings),
Marc Eberhard (bridges), Donald Bal-
lantyne (lifelines), and Peter May
(socio-economics), all from the Uni-
versity of Washington (UW).

Most of the time, we were busy answering phones, with
three or four lines going at a time. If one line was busy, it rang
at the next open line in the cluster. We were taking reports of
where things had happened, questions about what to look for,
and calls from field people feeding us information or making
requests for help. When a request came in from Fox Island for

Figure 1. (top) Earthquake-induced land-

slide at Salmon Beach near Tacoma. View to

the east. Salmon Beach has experienced

previous landslides. This slide was reacti-

vated by the Nisqually earthquake, destroy-

ing two houses at its toe and putting several

more in danger. A previous slide scar is to

the left and the scar caused by the Nisqually

earthquake is to the right. The slide occurred

on a fairly steep section of the coastal bluff.

The slope is approximately 0.5:1 (horizon-

tal:vertical) with a height of about 90 feet.

The failure is relatively surficial. Photo from

Bray and others (2001), a NSF-PEER spon-

sored reconnaissance effort.

Figure 2. (right) Closeup of the Salmon

Beach landslide as it encroaches on the rear

of a house. There used to be a path between

the back of the building and the hillside.

Workers are cleaning up debris. Photo by

Josh Logan.
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Geologist Areas of earthquake reconnaissance and service

Loren Baker Southeast portion of Hood Canal; Fox Island; Steilacoom

Joe Dragovich Olympia area—Downtown, Capitol Lake, Deschutes Parkway; Port of Tacoma; lower Puyallup River valley; Puyallup; Sumner; Alderton

Andy Dunn Cowlitz Co.—greater Kelso–Longview; Olympia—Capitol Lake; Shelton—Oakland Bay

Bill Lingley Camp Murray; south Puget Sound aerial reconnaissance; Lacey; lower Nisqually River; Johnson Point; Shelton; southern Hood Canal;
Hartstene Island; Key Peninsula; Gig Harbor

Josh Logan Centralia–Chehalis area; Salmon Beach–Tacoma Narrows; Fox Island; Ketron Island; Anderson Island; McNeil Island; southern Key
Peninsula

Sam Magsino Olympia area—Downtown, Deschutes Parkway, Capitol Lake; Cowlitz Co.—Kelso–Longview–Castle Rock; Shelton—Oakland Bay

Mac McKay Nisqually delta

Dave Norman Olympia area—Capitol Campus, Capitol Lake, Deschutes Parkway; Nisqually delta

Steve Palmer Olympia area—Downtown, Capitol Lake, Deschutes Parkway, Black Lake, West Olympia

Mike Polenz Olympia area—Downtown, Capitol Lake, Deschutes Parkway, Black Lake; Ketron Island; Anderson Island; McNeil Island; southern Key
Peninsula; Cooper Point; Carlyon Beach; Hammersley Inlet; Oakland Bay

Pat Pringle Camp Murray; Steilacoom; Nisqually delta; Luhr Beach; Beachcrest; Tolmie State Park; Millersylvania State Park; Downtown Olympia;
Lacey; Offut Lake; Ohop Valley; Electron; middle Puyallup River valley

Hank Schasse Olympia area—Capitol Campus, Capitol Lake, Deschutes Parkway; Port of Tacoma; lower Puyallup River valley; Puyallup; Sumner;
Alderton

Tim Walsh Camp Murray; south Puget Sound aerial reconnaissance; FEMA Disaster Field Office, Olympia

Karl Wegmann Olympia area—Downtown, Mud Bay, Black River corridor, Tumwater–Deschutes valley; Ohop Valley; Electron; middle Puyallup River
valley; Orting; Nisqually delta

Table 1. Washington Division of Geology and Earth Resources geologists response to Nisqually earthquake—areas of reconnaissance and ser-
vice
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someone to look at the damage, we sent
Josh Logan, since he is mapping there.
Homeowner calls were referred to us
and, if necessary, we sent someone out
to take a look at the damage.

That afternoon, I arranged for a
plane from the Department of Trans-
portation to take Bill Lingley and me to
fly the Puget Sound coastline looking
for landslides. Pat Pringle set up at a
desk to use his outside e-mail account
to find out what was happening at re-
mote places like Mount Rainier. As in-
formation came in, we sent out periodic
reports of our findings. We had a brief-
ing for the EOC staff (and the gover-
nor’s staff and congressional delega-

Figure 5. Aerial view of Olympia, looking

north from just south of Capitol Lake. Inter-

state-5 is in the foreground. Capitol Campus

is on a bluff in the center of the photo and the

critical Fourth/Fifth Avenue bridge connec-

tion is just to the left and above that. Down-

town Olympia occupies the flat peninsula

above and to the right. Puget Sound is at the

top. Photo provided by the City of Olympia,

Washington.

Figure 6. Damage to the Fourth Avenue bridge parapet is visible in the center of the photo. A ma-

jor bottleneck to traffic, the bridge was slated to be replaced in the next few years. The bridge re-

mains closed due to earthquake damage while efforts are made to speed up the schedule for

bridge replacement. Photo copyright 2001 by Robert J. Reid.
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tion when they were there) every four
hours. We’d go around the room and
everyone would report on what they
had found out.

We were also in charge of rumor
management, particularly about after-
shocks and bogus earthquake predic-
tions. Small crustal events are more no-
ticeable after a large quake. People
thought small quakes (M <3) in Maple
Valley and Bremerton were after-
shocks, although they were actually ex-
pected background activity. A rumor
was circulating that there was going to
be a magnitude 9 quake on March 6. It
probably had its source in predictions
made by Jim Berkland on his website
(http://www.syzygyjob.org/syzygy/
index.shtml). His predictions were that
there would be an eight-day window
starting on the Wednesday following
the quake for a magnitude 3 to 5.5
quake in Washington or Oregon and a
magnitude 7 or larger somewhere on
the Pacific Rim—none of which came
to pass. The rumors of a magnitude 9
quake probably resulted from a phe-
nomenon similar to what happens in a

Figure 9. Landslide on Martin Way between Ensign Road and

Pattison Street in Olympia. View to the east. The slide took out some

utility poles but the wires remained intact. Photo by Karl Wegmann.

Figure 8. (left) View looking north to a road failure at a landslide on

Highway 302 beside Case Inlet (top left) and directly east of Allyn. The

landslide, which has failed repeatedly during years past, consists partly

of a deep-seated rotational slide at the contact of thick outwash sand

and older Pleistocene units and partly of static liquefaction of the sand

(Steve Lowell, Washington State Dept. of Transportation, oral com-

mun., 2001). Failure during the earthquake occurred mainly in a low-

density fill that had been installed under the highway to reduce recur-

rent movement on this landslide. A engineer’s notebook is propped

across the crack for scale. Photo by Bill Lingley.

Figure 7. View of a lateral spread in a residential yard on Long Lake east of Lacey. The fence is

attached to a retaining wall at the edge of Long Lake. This lateral spread occurred in a manmade

fill that is superimposed on peat and lacustrine sediments. The failure pattern is controlled by

lower root-strength between strips of new sod and by the retaining wall, which was down-dropped

and back-rotated. Photo by Bill Lingley.
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game of ‘telephone’—the quake’s magni-
tude got larger and larger with each repeat.
(See related story, p. 27.)

I stayed at the EOC through Saturday.
As long as Governor Locke and his staff
were there, they wanted a geologist avail-
able to answer any questions that came up.
Pat and Bill were there on Wednesday, and
on Thursday, they went into the field with
Karl Wegmann.

The Federal Emergency Management
Agency (FEMA) disaster field office was
set up on Monday at the vacant Lamonts
store in Capitol Mall. My job there (at a
desk under the Intimate Apparel sign) was
to coordinate collation of all data sets for
later evaluation of mitigation alternatives.

A clearinghouse for Nisqually earth-
quake information was set up at the UW
(http://maximus.ce.washington.edu/~
nisqually/). FEMA money was used to
hire the staff and equipment.

The Cascadia Region Earthquake
Workgroup (CREW) decided to extend
the work of the clearinghouse and docu-
ment business interruptions caused by the
quake, which are hard to document prop-
erly. One of its members, Barry McDon-
nell, a retired Bank of America executive,
took over as director. Graduate students
were hired to help with damage reports.

CREW is a not-for-profit corporation
of private and public representatives
working together to improve the ability of
Cascadia region communities to reduce
the effects of earthquake events (http://
www.crew.org/).

Patrick T. Pringle, Geologist 3,
Environmental Section

Just before the earthquake, I was talking
with Dennis Dixon and David Grinstead of
Pierce County Public Works and Chuck
Griffin of our Information Technology di-
vision in the plotter room on the third
floor—in fact, I had printed out a copy of
our geologic map of southwest Washing-
ton (Walsh and others, 1999) for them—
we had been discussing recent interpreta-
tions about shallow fault zones in this
area. Chuck had just walked out the door
and Dennis, David, and I were still in the
plotter room when the earthquake struck. I

Figure 10. (top) DGER geologist Hank
Schasse inspects liquefaction from a lateral
spread along Deschutes Parkway in Olympia.
Photo by Joe Dragovich.

Figure 11. (middle) Lateral spread across a
path at Capitol Lake, Olympia. Photo by Karl

Wegmann.

Figure 12. (bottom) Incipient lateral spread
(edge of complex) near Marathon Park in
Olympia. Photo by Joe Dragovich..
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remember the P-wave hitting and hav-
ing that instant realization of what was
coming next, but I didn’t anticipate the
severity of it. What seemed like only a
second or two later the shear waves hit
with what I recall as an almost violent,
east–west jerking. It was very loud and
the lights went out; it was pitch black.
About all that occurred to me at that
moment was that there was a lot of
equipment in the room and no cover, so
I dropped to the floor as close to the east
wall as I could get and protected my
head.

The shaking seemed to last a long
time, but by the time the emergency
lighting came on (9 seconds after they
went off?) I could feel that the motion
was attenuating so I waited a few more
seconds, jumped to my feet, and made
my way to the door. I remember walk-
ing swiftly down the hall and then down
into the Geology Division office where
I noticed that many of the hatches on
the overhead fluorescent lights were
still swinging vigorously back and
forth—the waves were still rolling
through!

One of our mandates as a division is
to send someone to the EOC (Emergency Operations Center) at
Camp Murray, near Fort Lewis, in case of a geologic emer-
gency. We go there to be consultants in times of crisis, to filter
what’s going on through a scientific viewpoint, and to pass the
information along to those in government and the media who
need it. Although I’m mainly a volcano specialist, I’m an alter-
nate in case of seismic emergencies.

The EOC is a “base-isolated” building, that is, it has a
mechanism that insulates it somewhat from ground motion. In-
side we were working from pods of 5 or 6 desks—ours was the
natural sciences station. What we did immediately was to use
the phones and Internet to gather as much information as we
could about what was going on and also to get in touch with our
families. Governor Locke and his staff got there not long after
we did. We did have some time to get research done before they
got there—I was able to go online within 20 minutes. Unfortu-
nately, I couldn’t log on to my e-mail at work, which had the
address book I needed, but luckily I had access to my Yahoo ac-
count and was able to send messages to my family and other
people who would be concerned to let them know I was okay.
My dad had just been admitted to intensive care in a coronary
unit in Ohio the night before, so I was quite concerned about
getting the word back to my family that we were okay!

When Governor Locke and his staff came in for their first
briefing, duty officer Ken Parrish at WADEM (Washington
Department of Emergency Management) introduced everyone
at the various stations and explained what their expertise was.
We know Ken because we have worked closely with him and
others at the DEM in teams such as the Mount Baker–Glacier
Peak Volcanic Hazard Group. He really did an impressive job
with the introductions. The Governor and his staff had no
doubt about whom to ask about any particular questions they
might have.

While Tim and Bill went on a reconnaissance flight, I
stayed behind. At one point, the King County Fire Chief called

Figure 13. Chimney topple at a private residence in the South Capitol area, Olympia. Photo by

Karl Wegmann.

Figure 14. Chimney topple at a private residence at the south end of

East Bay in Olympia. The house was built on fill over estuarine muds.

Photo by Karl Wegmann.
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and wanted to borrow some equipment from the Department of
Natural Resources (DNR) region office. I relayed him to Pat
McElroy, Executive Director, Regulatory Programs, and
Bonnie Bunning, Executive Director, Policy and Administra-
tion. I took calls from reporters and the media, and continued to
do Internet research on the quake and its effects.

My experience as a Public Information Officer for the Cas-
cades Volcano Observatory (CVO) came in handy. I talked to
the folks at Mount Rainier, CVO, and the Park Service by e-
mail about conditions on the mountain and asked if anyone had
seen any evidence of landsliding. They mentioned some snow
avalanches and told me they had asked Tom Sisson of the
USGS, who recently mapped Mount Rainier in great detail, to
fly up from California. On that following Monday, Tom and
Barbara Samora of the National Park Service took an observa-
tion flight around the mountain—they mainly saw evidence of
a lot of snow avalanches.

About 4:00 p.m. on the 28th, I finally got through to Craig
Weaver at the USGS by telephone and we were able to review
what had been learned thus far about the earthquake and its ef-
fects. Just in time, as it turned out, because Tim had not arrived
back from his flight, and there was a tap on my shoulder sum-
moning me to participate in a briefing for the Governor and his
staff. This briefing lasted about 25 minutes. I simply provided
an overview of the geologic setting of the quake, a deep “Beni-
off” type, and stressed that we were lucky because, although
the effects were felt over a large area, the intensity was dramat-
ically lower than it would have been for a shallower quake of
the same magnitude. I also reviewed the types of ground fail-
ures that had historically occurred during such quakes—
although it turned out (luckily) that the “shake map” that I had
found on the web and held up at the meeting had exaggerated
the estimated intensity of the quake.

Within 20 minutes, we watched Governor Locke in front of
the cameras, and I was impressed with the way the he picked up
on the important elements of the briefing. We are fortunate to
have a governor who is interested in geology and understands
the nature and importance of science.

I was somewhat frustrated that I didn’t get out into the field
that first day, but I was happy to be of service at the EOC. We

got home at about midnight, and I came back early on Thursday
to take up my station at the pod. Later that day, I left the EOC to
help do an inventory of various areas to evaluate the effects of
the quake. I ended up going to Tolmie State Park, where dam-
age had been reported, and checking areas just to the east and
west. The State Parks representative at the pod helped me get in
touch with Karen Rollman, the park ranger, and I did the tour
with her. They had serious damage. Liquefaction had floated

Figure 15. Damage at Tolmie State Park,
about 3 miles from the epicenter. Karen Roll-
man, Park Ranger, looks at a lateral spread
at the northwest corner of the kitchen shelter.
The shelter, which was constructed on fill,
was damaged beyond repair. The concrete
foundation pillars supporting the shelter rose
buoyantly about 2 inches, and the road and
bridge approach leading to the shelter were
damaged by numerous ground cracks. Photo

by Pat Pringle, March 1, 2001.

Figure 16. DGER geologist Pat Pringle ex-
amines cracking of sidecast material along
the edge of Orville Road in Ohop Valley at
the south end of Lake Kapowsin approxi-
mately 7.3 miles north of Eatonville cutoff
road. Cracks persist for approximately 165
yards along the east side of the road. Individ-
ual cracks are about 24 inches long with hori-
zontal offsets of 5 to 6 inches and vertical off-
sets of up to 3 inches. View to the south.
Note: If full failure had happened here, ma-
terial would have ended up on railroad tracks
below the road to the east. Photo by Karl

Wegmann.
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the septic tank for the kitchen shelter so that the top was about 3
to 4 inches above the ground surface. The kitchen shelter,
which was built on fill material, was badly damaged (Fig. 15),
and there were cracks in the road leading to it and the bridge ap-
proach. The rest of the day I spent looking around Steilacoom,
where I found some minor structural damage to an old church
and major damage to the bridge over Chambers Creek and the
adjacent road that connect Steilacoom with University Place.

Thursday night, we attended the crowded meeting in Seat-
tle at the University of Washington where people presented in-
ventories of effects or damage they had seen. We broke into
subgroups to plan recons of areas that had not yet been visited
and to target sites that had been damaged or affected by the ‘49
or ‘65 quakes.

On Friday, Karl Wegmann and I traveled east from Olym-
pia and then north up the Ohop valley to Sumner (Fig. 16). It
seemed that we were just behind the Pierce County Public
Works crews who were already assessing damage and patching
roads. We noticed that the damage was not nearly as wide-
spread or bad as it had been in the 1949 quake, however, we did
find many cracks in roads leading out of the Puyallup Valley.

In the Orting area, this was of particular concern because of
the potential danger of inundation by lahars (volcanic debris
flows) from Mount Rainier. It is possible that an earthquake

could trigger a lahar. These roads are the evacuation route out
of the valley if a lahar is approaching. All but two roads had
major cracks, and some cracks were still propagating within
hours of being patched by the road crew. Karl and I also wit-
nessed an active landslide that was threatening a water supply
storage facility.

By Saturday, the adrenaline was starting to dissipate, and I
was able to reconnect with my wife Leslie, who had endured a
shower of ceiling tiles during the quake as she was crouched
under her desk at a Department of Health building near the
Olympia airport. Like many, we had been out of touch with
each other for most of the day on the 28th and very much
needed some time to get together and talk about what had hap-
pened. On Saturday, we walked through downtown Olympia to
look at the damage (Figs. 17 and 18). On Sunday afternoon, we
went out to the Nisqually delta to see some of the liquefaction
features and to sample sediment that had come up in the sand
blows (Figs. 19 and 20)—they were full of pumice, fragments
of andesite lava from Mount Rainier, and charred wood—all
from ancient lahar deposits that are suspected of coring the
Nisqually delta.

One of the strange things is that in natural disasters, we find
out about a lot of the damage by word of mouth. That’s the way

Figure 18. Damage to the Skookum Bay Outfitters building on Capitol

Way in downtown Olympia. The chunks of masonry fell right where the

UPS delivery truck usually parks at the time of day the quake happened.

Photo by Josh Logan.

Figure 17. Parapet failure on the south side of the Washington Fed-

eral Savings building at Fifth Avenue and Capitol Way in downtown

Olympia. Building also pictured in cover photo. Photo by Josh Logan.
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humans communicate. For example, a neighbor came to my
house to sell Girl Scout cookies and told me about a landslide at
Timberline High School. I went over to take a look. There were
liquefaction features on the baseball field, a sand blow behind
the backstop, cracks through the center of the infield, and set-
tlement.

I made an interesting connection while talking with a
woman I had met during our Mount Rainier outreach efforts a
few years ago. Amy Meighan called from Orting and said,
“Pat, remember me? I was watching Mount Rainier when the
earthquake happened. I thought the
mountain was coming down (Fig. 21).
What happened is it got all cloudy all of
a sudden.” Although she did not know
it at the time, Amy was probably seeing
the effects of the numerous snow ava-
lanches triggered by the earthquake
whose features Sisson and Samora had
seen during their overflight.

Some time after the earthquake, I
called The Olympian to see about get-
ting a tree-ring sample from an old-
growth oak tree that had been cut down
in Lacey. They referred me to arborist
Dave Williams at Olympic Tree Ser-
vice, whom I found out is brother to
Doug Williams of our Aquatic Lands
Division. While talking to Dave about
getting the sample, I happened to ask,
“Where were you when the earthquake
happened?” He was 65 feet up in a
Douglas fir he had just topped. He
watched the earthquake coming as a
wave through the treetops. Luckily he
was belted on, but even so, he held on
for dear life as the treetop tried to go in
three directions at once.

In one of our most memorable calls
from out of town, a friend’s first ques-

tion was “Did the
Mount St. Helens
Jim Beam bottle
survive the earth-
quake?” It had—I
would hate to have lost one of my most grotesquely beautiful
pieces of kitsch, with its stopper in the form of a Plinian erup-
tion column and its attached vial of Mount St. Helens ash!

Quake experiences, like everything else, are relative. In
1994, Barbara Blubaugh of our Information Technology

Figure 20. View of sand blows from an

east–west trending crack at the Nisqually Na-

tional Wildlife Refuge (Nisqually River del-

ta).The crack is located on Center Road about

220 yards northwest of the twin barns. The

ejected sediments contain abundant crystals,

as well as lithics and pumice, of Mount Rainier

andesite. Marker pen is for scale (5.3 inches).

Photo by Pat Pringle, March 4, 2001.

Figure 19. DGER geologist Mac McKay measuring sand volcanoes at Nisqually delta. Candle-

like objects are new seedlings surrounded by plastic tubes to protect them from foraging deer.

Photo by Dave Norman.

Figure 21. Mount Rainier looms over Orting, some 30 miles flow distance from the volcano.

About 600 years ago, the Electron mudflow was initiated when a 260,000+ cubic yard sector of the

volcano’s west flank slid away from its source area at Sunset Amphitheater and flowed along the

Puyallup River valley as far downstream as Puyallup. It buried an old growth forest composed

mainly of Douglas fir in as much as 25 feet of rock and mud. The higher terrace with farm buildings

is topped by the Electron mudflow, and the lower terrace with horses is post-Electron alluvium.

Photo by Pat Pringle, 1995.
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Division survived the much shallower,
magnitude 6.8 Northridge, California,
earthquake near its epicenter. I stopped
by her desk about a week after the Nis-
qually quake and asked how she had
done in this quake. “Just fine,” she said.
“I thought this one was a 5.0!”

Stephen P. Palmer, Geologist 3,
Environmental Section

After the earthquake, I got out of the
Natural Resources Building (NRB)
with a cell phone and the number of the
Emergency Operations Center. Before
I went anywhere else, I checked on my
wife Lynn, who works at the Washing-
ton State Department of Transportation
(WSDOT) lab in Tumwater. We had
been a little worried about the safety of
the building during an earthquake. As it
turned out, ceiling tiles were coming
down, water pipes had burst, water was
pouring down on copy machines and
computers, and there was about 3
inches of water on the floor. In a depart-
ment of engineers, Lynn, a geologist,
was one of two people authorized to
check out the building for damage.

As I was driving to the WSDOT lab
along Capitol Way, I saw over my
shoulder a landslide failure at Capitol
Lake. Later that day Lynn and I looked
at it from the far side of the lake. All of
my equipment—cameras and note-
books—was back in the NRB and I
couldn’t get back in the building to get
it.

From there, we went to check on my
mom, who is 89. She had had a box of
‘strike-anywhere’ matches sitting on an
antique writing desk in her bedroom.
They were probably there to light can-
dles in case of a power outage. During
the earthquake, a picture frame fell on
them and set them on fire. She was in
the living room, and her cat was in the
bedroom. The cat came racing out of
the bedroom, made a circle around the
living room, and headed back to the
bedroom to escape out the kitty door.
She followed him there and found the
desk on fire. The dry, varnished mahog-
any caught quickly. If she had found the
fire just a few minutes later, it would
have spread to the clothes in her closet
and the whole place would have gone
up. She was able to put out the fire with
wet towels before we got there. The desk was badly charred.

We stayed with her for a while, then left to check out our
own home, and then to investigate the damage from the earth-
quake. We went out to look at the landslide on Highway 101
(Fig. 22), took pictures, then went back to look at Deschutes
Parkway, but were pulled in by the retaining wall failure at the
Extended Stay America (Fig. 23). To reach the Deschutes

Parkway failure, we came down Lakeridge Drive and walked
to Marathon Park. We didn’t see the really bad part till later.
We talked to a professor from South Puget Sound Community
College who was on the Highway 101 overpass during the
quake and saw the Extended Stay America retaining wall fail.

The next day Michael Polenz, Lynn, and I evaluated slope
failures on Capitol Campus for General Administration (GA),

Figure 22. Landslide on U.S. Highway 101 northwest of Olympia. The north lane of the four-lane

roadbed liquefied and slid down a ravine. The toe came to rest on a frontage road (foreground).

The slide volume is estimated at about 18,000 cubic yards. Photo by Karl Wegmann.

Figure 23. The earthquake-induced retaining-wall failure at Extended Stay America just off

Highway 101 in Tumwater. Photo by Steve Palmer.
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including a lateral spread failure along
the shore by the steam plant. We took a
closer look at the Capitol Lake land-
slide to see if it extended to the retain-
ing wall along Interstate 5; it didn’t.

Thursday evening, Michael Polenz
and I drove up to Seattle to the first
clearinghouse meeting held to organize
the reconnaissance investigation of the
earthquake. During the day I contacted
Sammantha Magsino, a temporary ge-
ologist working for the Division, and
had her check out damage in the Long-
view area where she lives.

On Friday, Lynn and I went out to
look at the Puyallup Valley. We got a
draft map from GeoEngineers that
traced abandoned channels of the
Puyallup River. We went to all the his-
toric liquefaction failure sites, tramped
the fields, and talked to farmers. There
was no evidence of new failure at any of
the historic sites. Joe Dragovich found
sand blows at one of the historic lique-
faction sites near Sumner. That night,
we attended the second meeting of the
clearinghouse for what was being
called the ‘Seattle’ earthquake.

The next day Lynn and I went out to Sunset Lake and
checked out the start of a landslide behind the Best Western
Motel on Trosper Road. The slope failure was almost to the
back of the building. We came back to the NRB when it re-
opened to get copies of the liquefaction hazard map for the
Olympia area that was published in 1999 and my field equip-
ment. On Sunday we went to view the mysterious new islands
in Offut Lake, a mystery Pat Pringle has since cleared up. (See
related story, p. 19.) We documented the Best Western land-
slide and went back to photograph the Deschutes Parkway
(Fig. 24) and Sunset Lake (Fig. 25) failures. During the follow-
ing few days, I consulted with GA about Deschutes Parkway
and connected them with WSDOT, which is taking the lead on
the repair of the roadway.

I had enough ground failures in the 10 square miles I was
covering to keep me busy for a long time. Steve Kramer of the
University of Washington, through a research grant from
WSDOT, is working on the residual strength of liquefied soils
in the Deschutes Parkway and Sunset Lake areas. WSDOT has
provided me funding to perform the geotechnical investigation
at Sunset Lake.

In mid-March, I had the opportunity of testifying before the
U.S. House of Representatives Sub-Committee on Research on
the Nisqually earthquake. This committee authorizes the Na-
tional Earthquake Hazard Reduction Program, which has pro-
vided most of the funding for my work on earthquake hazard
assessment while with DNR. A copy of my written testimony is
on the House of Representatives Committee On Science
website (http://www.house.gov/science/reshearings.htm).
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USGS Contracts $100 Million to U.S. Mapmaking Companies

From planning for the Olympics to documenting the effects
of natural disasters, digital orthophoto quads (DOQs) pro-

duced by the U.S. Geological Survey are proving to be the
working maps of the 21st century. They also are an excellent
example of a government–private industry partnership that is
working.

During the past decade, the USGS has directed nearly $100
million to private-sector mapping contractors, who have pro-
duced the DOQs for government agencies through cooperative
agreements.

The national DOQ program is managed and operated by
about 100 cartographers and technicians at the USGS Western
Mapping Center in Menlo Park, California. The raw materials
for making DOQs are supplied by several other USGS facilities
across the nation. In 1999, the Menlo Park group received the
Department’s Unit Award for Excellence in recognition of its
outstanding achievements in developing and managing the
DOQ program.

The technical name for these electronic maps may be a
mouthful, but DOQs, as they are known to those who use them,
are in some ways less technical and more accurate than the
standard USGS topographic maps. DOQs are computer-gener-
ated images of aerial photographs that have been mathemati-
cally corrected for changes in ground elevations and the posi-
tion of the aerial camera.

They combine the image characteristics of a photograph
with the geometric qualities of a map and are delivered and du-
plicated quickly on demand, making them more practical and
cost-effective for the mapping and commercial communities
than traditional paper maps.

Photographs used to make DOQs are processed and stored
in the archives of the National Aerial Photography Program,
housed at the Earth Research Observation Satellite (EROS)
Data Center in Sioux Falls, South Dakota. These 1- to 4-year-
old images, which cover almost every corner of the United
States, are high-resolution photographs taken from an altitude
of 20,000 feet at a scale of 1:40,000.

Because the DOQs can serve as a layer in geographic infor-
mation systems (GIS), they are especially useful for commu-

nity and special events planners and for hazard-response per-
sonnel. Planners for the 1996 Summer Olympics in Atlanta,
Georgia, used DOQs to produce the site maps needed for secu-
rity and venue coordination. DOQs are being used in a similar
manner by planners for the 2002 Salt Lake City Winter Olym-
pics to map out the event sites and plan transportation corri-
dors.

The USGS developed the initial concept of DOQs at its
Menlo Park mapping center in 1991, in response to a request
from the U.S. Department of Agriculture for more efficient
methods of producing up-to-date maps used to map the na-
tion’s soils. More recently and more dramatically, DOQs have
been used to support relief efforts during the Midwest flooding
of the 1990s and to help fight wildfires in the national forests.
Since 1991, many other agencies, such as the Natural Re-
sources Conservation Service, Farm Service Agency, U.S. En-
vironmental Protection Agency, U.S. Forest Service, and many
state and local mapping departments, have requested DOQs to
build their mapping databases.

Ten years later, nearly 65,000 DOQs are available to the
public, with complete coverage of the conterminous United
States expected by 2002. After that, most DOQs will be up-
dated every 10 years, with a quicker repeat coverage for those
areas of rapid land-use change. Because the USGS has limited
budgets and personnel to staff the nationwide DOQ production
program, it has worked out cooperative agreements with public
agencies to produce the DOQs under federal contract with pri-
vate mapping companies.

DOQs are now available on CD and can be ordered through
the Earth Science Information Centers (l-888-ASK-USGS).
Since 1998, the Microsoft TerraServer site has served as an ac-
cess point for viewing samples of the images and retrieving
web-compatible versions of DOQs over the Internet. More in-
formation on DOQs can be found at http://mapping.usgs.gov/
digitalbackyard/.

by Dale Russell

from People, Land & Water, U.S. Department of the Interior,

October/November, 2000, vol. 7, no. 7

USGS Map Projections Poster
Available Online

The USGS has handed out thousands of its Map Projec-
tions Posters over the years. This information is now on-
line at http://mac.usgs.gov/mac/isb/pubs/MapProjections/
projections.html. The online version is even better than the
original poster, as it contains a great deal more informa-
tion.

A map projection is used to portray all or part of the
round Earth on a flat surface. This cannot be done without
some distortion. Every projection has its own set of advan-
tages and disadvantages. There is no “best overall” projec-
tion. The mapmaker must select the projection best suited
to his or her needs, the one that will reduce distortion of the
most important features.

This website gives the key properties, characteristics,
and preferred uses of many historically important projec-
tions and of those frequently used by mapmakers today.
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Earthquake Creates Gassy Mounds In Offut Lake

Department of Natural Resources
geologists have been investigating

and analyzing several effects of the
Feb. 28 Nisqually earthquake. One of
the most curious has been the diapirs of
gassy muck that appeared near the shal-
low east end of Offut Lake near Olym-
pia (Fig. 1).

After several lakeside residents
reported mounds of muck and vegeta-
tion rising from the bottom, Thurston
County geologist Mark Biever visited
the site and photographed the features.
Later, DNR geologist Pat Pringle,
along with geology professor Jim Stroh
of The Evergreen State College, visited
the lake to examine the mounds and
sample for gases (Fig. 2). While they
were taking samples, they noticed the
telltale rotten-egg smell of hydrogen
sulfide. Later testing of the samples re-
vealed that the gas consisted mostly of
methane and minor carbon dioxide in
addition to traces of hydrogen sulfide, a
mixture popularly known as “swamp
gas”.

The gases were disturbed during the
earthquake, probably as sediments in
the bottom of the lake liquefied. The
gases inflated the sediments, thus caus-
ing the vegetable matter and muck to
rise, particularly in areas where herbicides had been applied to
non-native water lilies a year or two previous to the earth-
quake. Pockets of gas caused by natural decomposition of veg-
etation are not uncommon in western Washington's lakes,
Pringle said.

The mounds were of varying sizes, and some protruded
above the water, while others were just below the surface. The
largest were up to 60 feet in diameter and four feet high. The
mounds were subsiding by March 14.

On March 28, Pringle and Maggie McKinnon from the
Washington State Department of Ecology went out to sample
the lake for temperature, dissolved oxygen, conductivity, and
pH, and the lake appeared to be in good condition—the gas ef-
fects were quite localized.

There was some local concern about danger from the
mounds. Probably the greatest danger was that they appeared
to be islands of solid sediment. However, they were basically
fragile piles of muck buoyed up by gas bubbles. If anyone tried
to walk on the mounds, they would sink. If the gases were in a
great enough concentration, a person sinking into one of the
mounds could become asphyxiated, because the gases are
heavier than air. Furthermore, the tangle of dead vegetation
could cause entrapment. Fortunately, that did not happen. �

Figure 2. Gas bubbles rising from the mounds in Offut Lake. Photo by

Pat Pringle.

Figure 1. Diapir of mud and vegetation at Offut Lake. Surface exposure of the mound is about 20

meters by 6 meters in size. View is to the east. The mound evidently formed when shaking liquefied

gas-rich bottom sediments. Most of the diapirs appeared where herbicide had been applied for

control of non-native water lilies. Tests of the gases revealed a combination of methane, carbon di-

oxide, and hydrogen sulfide, or “swamp gas”. Photo by Mark Biever, Thurston County geologist.

PERSONAL ACCOUNT
Josh Logan, Geologist 4,
Geology and Resources Section, DGER

I was down in the Marina District when the quake hit. It was
10:54 am by my watch. My car was rocking side to side, and
I watched the walls and windows of the Swantown Marina
bulge and wave. A guy pulled up to the stop sign, got out,
went around his car, and looked underneath. I timed the du-
ration of shaking in that area at about 2 minutes. My watch
didn’t have a second hand, but it said 10:56 when the shak-
ing finally stopped. I spent the rest of the afternoon photo-
graphing damage to the downtown Olympia area.
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How We Measure an Earthquake—Magnitude and Intensity

Magnitude is a measure of the strength of an
earthquake or strain energy released by

it, as determined by seismographic observa-
tions. This is a logarithmic value originally de-
fined by Charles Richter (1935). The Richter
Scale is not used to express damage. An earth-
quake in a densely populated area, which re-
sults in many deaths and considerable damage,
may have the same magnitude as a quake in a
remote area that does nothing more than
frighten the wildlife.

Intensity is a measure of the effects of an
earthquake at a particular place on humans,
structures and (or) the land itself. The intensity
at a point depends not only upon the strength of
the earthquake (magnitude) but also upon the
distance from the earthquake to the point and
the local geology at that point.

The Richter Magnitude Scale

Seismic waves are the vibrations from earthquakes that travel
through the Earth. They are recorded on instruments called
seismographs. Seismographs record a zigzag trace that shows
the varying amplitude of ground oscillations beneath the in-
strument (Fig. 1). Sensitive seismographs, which greatly mag-
nify these ground motions, can detect strong earthquakes from
sources anywhere in the world. The time, locations, and magni-
tude of an earthquake can be determined from the data re-
corded by seismograph stations.

The Richter magnitude scale was developed in 1935 by
Charles F. Richter of the California Institute of Technology as
a mathematical device to compare the size of earthquakes. The

magnitude of an earthquake is determined from
the logarithm of the amplitude of waves re-
corded by seismographs. Adjustments are in-
cluded for the variation in the distance between
the various seismographs and the epicenter of
the earthquakes. On the Richter Scale, magni-
tude is expressed in whole numbers and deci-
mal fractions. For example, a magnitude 5.3
might be computed for a moderate earthquake,
and a strong earthquake might be rated as mag-
nitude 6.3. Because of the logarithmic basis of
the scale, each whole number increase in mag-
nitude (for example, from 4.6 to 5.6) represents
a ten-fold increase in measured wave ampli-
tude on a seismogram. As an estimate of en-
ergy, each whole number step in the magnitude
scale corresponds to the release of about 30
times more energy than the amount associated
with the preceding whole number value.

In other words, a magnitude 6.7 earthquake releases over
900 times (30 times 30) the energy of a 4.7 earthquake—or it
takes about 900 magnitude 4.7 earthquakes to equal the energy
released in a single 6.7 earthquake! There is no beginning or
end to this scale. However, rock mechanics seems to preclude
earthquakes smaller than about -1.0 or larger than about 9.5. A
magnitude -1.0 event releases about 900 times less energy than
a magnitude 1.0 quake. Except in special circumstances, earth-
quakes below magnitude 2.5 are not generally felt by humans.

Earthquakes with magnitude of about 2.0 or less are usually
call microearthquakes. They are not commonly felt by people
and are generally recorded only on local seismographs. Events
with magnitudes of about 4.5 or greater—there are several
thousand such shocks annually worldwide—are strong enough
to be recorded by sensitive seismographs all over the world.
Great earthquakes, such as the 1964 Good Friday earthquake in
Alaska, have magnitudes of 8.0 or higher. On the average, one
earthquake of this size occurs somewhere in the world each
year. Although the Richter Scale has no upper limit, the largest
known shocks have had magnitudes in the 8.8 to 8.9 range. Re-
cently, another scale called the moment magnitude scale has
been devised for more precise study of great earthquakes.

The Modified Mercalli Intensity Scale

The effect of an earthquake on the Earth’s surface is called the
intensity. The intensity scale consists of a series of certain key
responses such as people awakening, movement of furniture,
damage to chimneys, and finally—total destruction. Although
numerous intensity scales have been developed over the last
several hundred years to evaluate the effects of earthquakes,
the one currently used in the U.S. is the Modified Mercalli In-
tensity Scale (MMI). It was developed in 1931 by the Ameri-
can seismologists Harry Wood and Frank Neumann. This
scale, composed of 12 increasing levels of intensity that range
from imperceptible shaking to catastrophic destruction, is des-
ignated by Roman numerals. It does not have a mathematical
basis; instead it is an arbitrary ranking based on observed ef-
fects.

The Modified Mercalli Intensity value assigned to a spe-
cific site after an earthquake has a more meaningful measure of
severity to the nonscientist than the magnitude because inten-

Describing Magnitude

When scientists refer to a
“great” earthquake, they do not
mean the earthquake was fabu-
lous, they mean it was huge. In-
formally, earthquakes are clas-
sified according to their magni-
tude size:

under 5.0 small
5.0–6.0 moderate
6.0–7.0 large
7.0–7.8 major

7.8+ great

From the U.S. Geological Sur-
vey [http://www.scecdc.scec.
org/eqcountry.html]

Figure 1. Seismogram of the Nisqually earthquake from a station in

northern Italy. Frequently a more complete record can be obtained from

stations further away from a large quake. ‘P’ indicates the arrival of the

P-wave, a compressional wave that travels fast, and the ‘S’, the S-

wave, a shear wave that is slower but larger and does most of the dam-

age. Rapid shaking dies off quickly with distance, so nearby earth-

quakes are ‘jolting’ and far away earthquakes are ‘rolling’. Duration of

the shaking increases with the magnitude of the earthquake.

Seismogram downloaded from http: / /www.seismicnet.com/

quakes/0102/.
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sity refers to the effects actually experienced at that place. Af-
ter the occurrence of widely felt earthquakes, the U.S. Geologi-
cal Survey mails questionnaires to postmasters in the disturbed
area requesting the information so that intensity values can be
assigned. The results of this postal canvass and information
furnished by other sources are used to assign an intensity
within the felt area. The maximum observed intensity gener-
ally occurs near the epicenter.

The lower numbers of the intensity scale generally deal
with the manner in which the earthquake is felt by people. The

higher numbers of the scale are based on observed structural
damage. Structural engineers usually contribute information
for assigning intensity values of VIII or above.

Although they measure different characteristics of an
earthquake, the Richter Scale and the Modified Mercalli Inten-
sity Scale can be roughly equated near the epicenter as shown
in Table 1.

Abridged from “The Severity of an Earthquake”,

U. S. Geological Survey General Interest Publication,

http://pubs.usgs.gov/gip/earthq4/severitygip.html

Richter

magnitude

MMI

equivalent Modified Mercalli Intensity Scale (MMI)

1.0–3.0 I I. Not felt except by a very few under especially favorable conditions.

3.0–3.9 II–III II. Felt only by a few persons at rest, especially on upper floors of buildings.

III. Felt quite noticeably by persons indoors, especially on upper floors of buildings. Many people do not recognize it as an
earthquake. Standing motor cars may rock slightly. Vibrations similar to the passing of a truck. Duration estimated.

4.0–4.9 IV–V IV. Felt indoors by many, outdoors by few during the day. At night, some awakened. Dishes, windows, doors disturbed; walls
make cracking sound. Sensation like heavy truck striking building. Standing motor cars rocked noticeably.

V. Felt by nearly everyone; many awakened. Some dishes, windows broken. Unstable objects overturned. Pendulum clocks
may stop.

5.0–5.9 VI–VII VI. Felt by all, many frightened. Some heavy furniture moved; a few instances of fallen plaster. Damage slight.

VII. Damage negligible in buildings of good design and construction; slight to moderate in well-built ordinary structures;
considerable damage in poorly built or badly designed structures; some chimneys broken.

6.0–6.9 VII–IX VIII. Damage slight in specially designed structures; considerable damage in ordinary substantial buildings with partial
collapse. Damage great in poorly built structures. Fall of chimneys, factory stacks, columns, monuments, walls. Heavy
furniture overturned.

IX. Damage considerable in specially designed structures; well-designed frame structures thrown out of plumb. Damage great
in substantial buildings, with partial collapse. Buildings shifted off foundations.

7.0 and
higher

VIII or
higher

X. Some well-built wooden structures destroyed; most masonry and frame structures destroyed with foundations. Rails bent.

XI. Few, if any (masonry) structures remain standing. Bridges destroyed. Rails bent greatly.

XII. Damage total. Lines of sight and level are distorted. Objects thrown into the air.

Table 1. Magnitude/intensity comparison. Magnitude and intensity measure different characteristics of earthquakes. Magnitude measures the en-
ergy released at the source of the earthquake. Magnitude is determined from measurements on seismographs. Intensity measures the strength of
shaking produced by the earthquake at a certain location. Intensity is determined from effects on people, human structures, and the natural environ-
ment. The table below gives intensities that are typically observed at locations near the epicenter of earthquakes of different magnitudes. Down-
loaded from http://neic.usgs.gov/neis/general/handouts/mag_vs_int.html.

WASHINGTON DIVISION OF GEOLOGY EARTHQUAKE HAZARD MAPS AVAILABLE

Preliminary maps of liquefaction susceptibility for the Renton

and Auburn 7.5� quadrangles, Washington, by S. P. Palmer, 1992.
Washington Division of Geology and Earth Resources Open File Re-
port 92-7, 24 p., 2 plates. Free.

Liquefaction susceptibility for the Des Moines and Renton 7.5-

minute quadrangles, Washington, by S. P. Palmer, Henry W.
Schasse, and D. K. Norman, 1994. Washington Division of Geology
and Earth Resources Geologic Map GM-41, 2 sheets, scale 1:24,000,
with 15 p. text. $3.71 + .29 tax (Wash. residents only) = $4.00.

Relative earthquake hazard map for the Vancouver, Washington,

urban region, by M. A. Mabey, I. P. Madin, and S. P. Palmer, 1994.
Washington Division of Geology and Earth Resources Geologic Map
GM-42, 2 sheets, scale 1:24,000, with 5 p. text. Free.

Liquefaction susceptibility for the Auburn and Poverty Bay 7.5-

minute quadrangles, Washington, by S. P. Palmer, T. J. Walsh, R.
L. Logan, and W. J. Gerstel, 1995. Washington Division of Geology
and Earth Resources Geologic Map GM-43, 2 sheets, scale 1:24,000,
with 15 p. text. $4.63 + .37 tax (Wash. residents only) = $5.00.

Liquefaction susceptibility for the Sumner 7.5-minute quadran-

gle, Washington, with a section on liquefaction, by S. P. Palmer,

by J. D. Dragovich and P. T. Pringle, 1995. Washington Division of
Geology and Earth Resources Geologic Map GM-44, 1 sheet, scale
1:24,000, with 26 p. text. $2.32 + .18 tax (Wash. residents only) =
$2.50.

Geologic folio of the Olympia–Lacey–Tumwater urban area,

Washington—Liquefaction susceptibility map, by S. P. Palmer, T.
J. Walsh, and W. G. Gerstel, 1999. Washington Division of Geology
and Earth Resources Geologic Map GM-47, 16 p., 1 plate, scale
1:48,000. $2.32 + .18 tax (Wash. residents only) = $2.50.

Tsunami hazard map of the southern Washington coast—

Modeled tsunami inundation from a Cascadia subduction zone

earthquake, by T. J. Walsh, C. G. Caruthers, A. C. Heinitz, E. P.
Myers III, A. M. Baptista, G. B. Erdakos, and R. A. Kamphaus, 2000.
Washington Division of Geology and Earth Resources Geologic Map
GM-49, 12 p., 1 plate, scale 1:100,000. $3.71 + .29 tax (Wash. resi-
dents only) = $4.00.

(Our address and phone number are on p. 2. Orders must be prepaid.

Make check or money order payable to the Department of Natural Re-

sources. Taxes apply to Washington residents only. Please include

$1.00 for postage and handling of orders to be sent by mail.)
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Earthquakes in Washington State

Timothy J. Walsh, Wendy J. Gerstel, Patrick T. Pringle, and Stephen P. Palmer

Washington Division of Geology and Earth Resources

PO Box 47007; Olympia, WA 98504-7007

GEOLOGIC SETTING

More than 1,000 earthquakes occur in the state
annually. Washington has a record of at least 20
damaging earthquakes during the past 125
years. Large earthquakes in 1946, 1949, and
1965 killed 15 people and caused more than
$200 million (1984 dollars) in property damage.
Most of these earthquakes were in western
Washington, but several, including the largest
historic earthquake in Washington (1872), oc-
curred east of the Cascade crest. Earthquake his-
tories spanning thousands of years from Japan,
China, Turkey, and Iran show that large earth-
quakes recur there on the order of hundreds or
thousands of years. Washington’s short histori-
cal record (starting about 1833) is inadequate to
sample its earthquake record. Using a branch of
geology called paleoseismology to extend the
historical record, geologists have found evi-
dence of large, prehistoric earthquakes in areas
where there have been no large historic events,
suggesting that most of the state is at risk.

EARTHQUAKE TYPES IN
WASHINGTON

Washington is situated at a convergent continental margin, the
collisional boundary between two tectonic plates (Fig. 1). The
Cascadia subduction zone, the convergent boundary between
the North America plate and the Juan de Fuca plate, lies off-
shore from northernmost California to southernmost British
Columbia. The two plates are converging at a rate of about 3–4
centimeters/year (~2 inches/year); in addition, the northward-
moving Pacific plate is pushing the Juan de Fuca Plate north,
causing complex seismic strain to accumulate. Earthquakes are
caused by the abrupt release of this slowly accumulated strain.

Intraplate or Benioff Zone Earthquakes

Intraplate or Benioff zone earthquakes occur in the subducting
Juan de Fuca plate at depths of 25–100 km. The largest of these
recorded were the magnitude (M) 7.1 Olympia earthquake in
1949, the M6.5 Seattle–Tacoma earthquake in 1965, the M5.1
Satsop earthquake in 1999, and now the M6.8 Nisqually earth-
quake of 2001. Strong shaking during the 1949 Olympia earth-
quake lasted about 20 seconds; during the 2001 Nisqually
earthquake, about 40 seconds. Since 1870, there have been six
earthquakes in the Puget Sound basin with measured or esti-
mated magnitudes of 6.0 or larger, making the quiescence from
1965 to 2001 one of the longest in the region’s history.

As the Juan de Fuca plate subducts under the North Amer-
ica plate, earthquakes are caused by the abrupt release of
slowly accumulated strain. Benioff zone ruptures usually have
dip-slip or normal faulting and produce no large aftershocks.
These earthquakes are caused by mineral changes as the plate
moves deeper into the mantle. Temperature and pressure in-

crease, and the minerals making up the plate alter to denser
forms that are more stable at the increased temperature and
pressure. The plate shrinks and stresses build up that pull the
plate apart.

For the February 28, 2001, Nisqually earthquake, the hypo-
center, or point beneath the surface at which the rupture starts,
was at 52 kilometers (32 miles). The area of rupture was ap-
proximately 30 kilometers by 10 kilometers (18 miles by 6
miles) and slipped approximately one yard. The epicenter was
just off the Nisqually delta in Puget Sound. The quake was felt
as far north as Vancouver, British Columbia, as far south as Sa-
lem, Oregon, as far east as Spokane, Wash., and as far south-
east as Salt Lake City, Utah. Most of the damage was sustained
in the Olympia and Seattle areas.

Shallow Crustal Earthquakes

Shallow crustal earthquakes occur within about 30 km of the
surface. Recent examples occurred near Bremerton in 1997,
near Duvall in 1996, off Maury Island in 1995, near Deming in
1990, near North Bend in 1945, just north of Portland in 1962,
and on the St. Helens seismic zone (a fault zone running north-
northwest through Mount St. Helens) in 1981. All these earth-
quakes were about M5–5.5. In Oregon, historically a low-seis-
micity state, crustal earthquakes have recently occurred just
south of Portland (M5.7) and in Klamath Falls (M6.0). The
largest historic earthquake in Washington (estimated at M7.4),
the North Cascades earthquake of 1872, is also thought to have
been shallow. It may rank as Washington’s most widely felt
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Figure 1. Block diagram of the Cascadia subduction zone near Washington State. The

arrows on the plan view show where the interplate boundary is pulling apart forming an

oceanic ridge. The large arrows on the cross section show the movement of the Juan de

Fuca plate as it subducts under the North America plate. Modified from http://www.

geophys.washington.edu/SEIS/PNSN/INFO_GENERAL/eqhazards.html.
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earthquake. Because of its remote location and the relatively
small population in the region, though, damage was light.

Recent paleoseismology studies are demonstrating previ-
ously unrecognized fault hazards. New evidence for a fault sys-
tem that runs east–west through south Seattle (the Seattle fault)
suggests that a major earthquake, M7 or greater, affected the
area about 1,000 years ago. Similar large faults occur else-
where in the Puget Sound but have not been studied in detail.

Subduction Zone (Interplate) Earthquakes

Subduction zone (interplate) earthquakes occur along the inter-
face between tectonic plates. Compelling evidence for great-
magnitude earthquakes along the Cascadia subduction zone
has recently been discovered. These earthquakes were evi-
dently enormous (M8–9+) and recurred on average every 550
years. The recurrence interval, however, has apparently been
irregular, as short as about 100 years and as long as about 1,100
years. The last of these great earthquakes struck Washington
about 300 years ago.

HOW EARTHQUAKES CAUSE DAMAGE

The principal ways in which earthquakes cause damage are by
strong ground shaking, by the secondary effects of ground fail-
ures (surface rupture, ground cracking, landslides, liquefac-
tion, subsidence), or by tsunamis and seiches. Most building
damage is caused by ground shaking. (For more information
on damage caused by the Nisqually earthquake, see the related
story on p. 6.)

Ground Shaking

The strength of ground shaking (strong motion) generally de-
creases with distance from the earthquake source (attenua-
tion), but locally can be much higher than adjacent areas, due to
amplification (an increase in strength of shaking for some
range of frequencies). At the same time, there is a decrease, or
deamplification, in strength of shaking for other frequencies.
Amplification occurs where earthquake waves pass from bed-
rock into softer geologic materials such as sediments.

Strong shaking of long duration is one of the most damag-
ing characteristics of great subduction zone earthquakes.
Strong shaking during the 1964 Alaska earthquake lasted about
90 seconds with an additional 90 seconds of strong ground mo-
tions “still of alarming magnitude”, followed by “sway-
ing…and shaking a little”. The total time of shaking was about
3 minutes 40 seconds. Strong shaking is a hazard both near the
epicenter of an earthquake and in areas where amplification oc-
curs. West Seattle and certain areas of downtown Olympia are
examples of places where ground motion has been documented
as being significantly stronger than in adjacent areas during the
same earthquake. The extensive damage to the Cypress Struc-
ture viaduct in Oakland, California, was a classic example of
strong ground motion damage during the M7.1 Loma Prieta
earthquake of 1989. Most of the damage and deaths in earth-
quakes are caused by strong ground motion.

Ground Failures

Ground failures accompanying earthquakes include fault rup-
ture (surface faulting), ground cracking, subsidence, liquefac-
tion, and landslides.

Fault rupture occurs as offsets of the ground surface and is
limited to the immediate area of the fault. Other ground failures
can occur over a wide area and can have several causes.

Landslides, including debris avalanches from volcanoes, have
been caused by earthquakes. Earthquake-induced acceleration
can produce additional downslope force, causing otherwise
stable or marginally stable slopes to fail. In the 1964 Alaska
earthquake, for instance, most rockfalls and debris avalanches
were associated with bedding plane failures in bedrock, proba-
bly triggered by this mechanism. In addition, liquefaction of
sand lenses or changes in pore pressure in sediments trigger
many coastal bluff slides. Rockfalls, such as those that caused
two deaths in the 1993 Klamath Falls earthquake in Oregon,
can be triggered at great distances from earthquake epicenters.

Liquefaction occurs when water-saturated sands, silts, or (less
commonly) gravels are shaken so violently that the grains rear-
range and the sediment loses strength, begins to flow out as
sand boils (also called sand blows or volcanoes), or causes lat-
eral spreading of overlying layers. Ground failures, such as
ground cracking or lateral spreads (landslides on very shallow
slopes) commonly occur above liquefied layers. Noteworthy
liquefaction took place in Puyallup during the 1949 earth-
quake. The sands that failed in many cases were sand deposits
from Mount Rainier debris flows; similar hazards could be ex-
pected in other valley floors downstream from other strato-
volcanoes, such as Mount Baker, Mount St. Helens, and Mount
Adams.

Subsidence (including differential ground settlement) can re-
sult in the flooding and (or) sedimentation of subsided areas, as
occurred over broad areas in Chile (1960) and Alaska (1964).

Tsunamis and Seiches

Tsunamis (seismic sea waves) are long-wavelength (large dis-
tance between wave crests), long-period (several minutes to
several hours between wave crests) sea waves that can be trig-
gered by earthquakes or by landslides into a body of water.
These are erroneously called tidal waves even though they are
not caused by tides because they are sometimes preceded by a
recession of water resembling an extreme low tide. Tsunamis
are more damaging when they strike a coastline that has suf-
fered earthquake-induced subsidence. (See related article,
p. 31.)

Seiches resemble tsunamis but occur as standing waves (or
sloshes) in enclosed or partially enclosed bodies of water. �

Lasmanis Donates Collection to
University of Wyoming

Washington State Geologist Raymond Lasmanis has do-
nated exploration and mining files covering the years 1960
to 1982 to the Raymond Lasmanis Collection at the Ameri-
can Heritage Center of the University of Wyoming. The re-
cord of years of work in mining and geology, the donation
includes progress reports, property reports, maps, and other
materials from the U.S.—Alaska, Arizona, California,
Idaho, Missouri, Montana, Nevada, Oregon, Tennessee,
Utah; Canada—British Columbia, Manitoba, New Bruns-
wick, Northwest Territories, Nova Scotia, Ontario, Sas-
katchewan, and Yukon Territory; and worldwide from Aus-
tralia, Chile, Costa Rica, Greenland, Mexico, Portugal, and
Spain. This material, which might otherwise have been lost,
will be of value to geological scholars in the future.
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Natural Resources Building Earthquake Mitigation

Dorian Smith

Washington State Department of Natural Resources

Communications Product Development

PO Box 47040; Olympia, WA 98504-7040

Geologic history and common sense play major roles in pre-
paring for earthquakes, according to State Geologist Ray

Lasmanis.
Before completion of the Natural Resources Building

(NRB) in 1992, the design and components were markedly
changed on the advice of DNR geologists. About the same
time, concerns about the safety of government buildings in an
earthquake led to retrofitting many other Capitol Campus
buildings in Olympia.

When they first saw the original drawings for the NRB, ge-
ologists Steve Palmer and Tim Walsh were stirred to action.
Both had experience testing for ground motion. They had ana-
lyzed ground motion results from the 1949 Olympia earth-
quake and felt that the NRB’s architects had “underdesigned
for ground motion from a deep subduction-type earthquake.”

Both felt that the building’s support needed enhancement
for two reasons:

1. The area’s history of major earthquakes. The likelihood of a
subduction earthquake is high for western Washington, and
data was available from the 1949 earthquake.

2. The type of soil at the building site. As indicated by the dis-
covery of layers of peat, the building site is an ancient lake
bed that could easily amplify ground movement during an
earthquake.

After Palmer and Walsh met with the architects in 1989, the
building’s foundation was reinforced with additional pilings
and other modifications. This caused shuffling of the construc-
tion budget. Since the building was approved by the State Leg-
islature for a fixed cost, the extra expense for the pilings came
from the allocations for furniture and other interior expendi-
tures.

Also before the building was constructed, Lasmanis drew
$10,000 from the division’s budget and received a matching
$10,000 grant from the U.S. Geological Survey to purchase

and install 17 strong motion sensors. The sensors were de-
signed to measure vertical and horizontal acceleration on vari-
ous levels of the building during an earthquake.

Lasmanis reported that 11 of the 17 sensors (powered by
car batteries) worked during the Feb. 28 earthquake (Table 1).
The data, which is being processed, will show the difference in
movement among the upper and lower floors and the parking
garage.

Lasmanis said the NRB’s sensors will prove invaluable.
They were the closest strong-motion sensors in a major build-
ing to the earthquake’s epicenter just off the Nisqually delta.
The only other nearby sensors were installed at the Department
of Transportation building and at the home of geophysicist and
photographer Harry Halverson who founded Kinemetrics, Inc.,
the primary manufacturer of seismic instruments worldwide.
(One of their seismographs was donated to DNR and can be
seen in the rotunda of the NRB.)

The Capitol Campus probably was saved from more severe
structural and office damage through the recommendations of
a 1991 committee called the Seismic Safety Advisory Commit-
tee. Prompted by several agencies’ concern for Washington’s
vulnerability to earthquakes, the legislature funded a multidis-
ciplinary effort that produced “A Policy Plan for Improving
Earthquake Safety in Washington”. DNR contributed leader-
ship and expertise, such as geologic maps, studies, assess-
ments, and a wealth of material from the Geology Division li-
brary.

Implementation of the 1991 policy plan and the formation
of the Cascadia Region Earthquake Workgroup (CREW) in
1995 and Project Impact (Seattle and King County in 1998 and
Pierce County in 2000) led to a major campaign to retrofit
building and transportation corridors and improve safety for
schools and homes.

All of the recommendations they made to secure your work
area still hold true today:

� Tie down bookcases and computers
using straps or hook-and-loop tape.

� Attach bookshelves and cabinets to
walls and floors with brackets.

� Brace library (free-standing)
bookshelves for side-to-side and
front-and-back movement.

� Keep clutter to a minimum,
particularly overhead.

� Thread chains through handles on
filing and map cabinet drawers to
keep them from opening and causing
the cabinet to tip over.

� Place rubber matting on the shelves
for better grip. �

Location Orientation

Peak acceleration

cm/s/s

Peak velocity

cm/s

Percent

gravity

Parking Level 3 @ M 16.5 east–west 144.2 12.97 0.15

Parking Level 3 @ M 16.5 north–south –92.3 8.60 –0.09

Parking Level 3 @ M 16.5 up 215.4 –24.47 0.22

Ceiling, P. Level 2 @ K/L 27 north–south 271.5 26.21 0.28

Ceiling, P. Level 2 @ K/L 27 east–west 252.7 –18.02 0.26

Parking Level 3 @ F 27 ** north–south –240.5 48.49 0.25

Parking Level 3 @ F 27 east–west 81.2 –6.90 0.08

Ceiling, P. Level 2 @ M 16.5 north–south –229.4 24.75 –0.23

Ceiling, 4th Floor @ M 16.5 north–south –374.5 35.20 –0.38

Ceiling, 4th Floor @ K/L 27 north–south 252.9 –35.04 0.26

Ceiling, 4th Floor @ K/L 27 east–west –322.6 30.81 –0.33

Table 1. Data from the strong-motion sensors in the NRB for the magnitude 6.8 Nisqually earth-
quake of February 28, 2001. The complete preliminary corrected dataset may be seen at
http://nsmp.wr.usgs.gov/data_sets/20010228_1.html
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Observations during the Nisqually Earthquake on
Harbor Island, Seattle, Washington

Robert D. Norris

U.S. Geological Survey at the University of Washington

Box 351650; Seattle, WA 98195

norris@usgs.gov or norris@geophys.washington.edu

Note from Tom Holzer of the U.S. Geological Survey, the original editor: The
following is one of the most exciting scientific descriptions of the Nisqually earth-
quake that I have read. It recounts the strong shaking produced by the earth-
quake, and most interestingly, describes the formation of a sand boil in the Port of
Seattle on Harbor Island. Sand boils result from the liquefaction of sand layers
that contain abundant water. This description by Bob Norris, a seismologist with
the U.S. Geological Survey, is one of the few known observations of the formation
of a sand boil by a scientist. Bob wrote his account about 6 days after the earth-
quake on March 6, 2001.

This is a narrative of my observations of strong ground mo-
tion and a sand blow I observed on Harbor Island from the

Nisqually earthquake. I apologize about the length of this ram-
ble, but the details might be helpful in reconstructing a rough
time history of the events I witnessed.

Harbor Island is located on the south shore of Elliot Bay,
south of downtown Seattle. The island consists largely of arti-
ficial fill and overlies former tidal flats of the Duwamish River
delta. In common with other sites on artificial fill, Harbor Is-
land shows high site response during earthquakes. (I can now
verify that from personal experience.)

At 10:54 a.m. on Wednesday, I was driving a GSA Chevy
Suburban, turning west off 11th Ave SW on Harbor Island. The
K2 is in an outbuilding on a large level lot owned by Arco, im-
mediately southwest of the junction of 11th Ave SW and SW
Florida streets. This lot is mostly empty, except for a line of
poles supporting a power transmission line of unknown volt-
age. Within the last few weeks, the lot had been graded, fresh
gravel put down, and most of it had been paved for a new park-
ing lot.

I had just entered the gravel driveway that gives access to
the site when the truck started yawing from side to side as if I’d
just driven diagonally over a large speed bump. I thought I had
driven over something I hadn’t seen, and went through several
seconds of confusion because the truck was still rocking
sharply after I had stopped. It wasn’t until I looked up and saw
the high tension wires overhead swaying and their support
poles leaning back and forth that I realized this was not only an
earthquake, but an unholy BIG earthquake! I was utterly
amazed that all this ground motion could go on so quietly—I
could hear things creaking and clanging from all the swaying,
but the ground itself was silent.

When I stopped gawking and resumed intelligent thought, I
remembered the wires overhead and gunned the truck into an
open area about 20 meters (20 yards) ahead, which looked like
a safe area to wait it out. At this point, about 15 to 20 seconds
into the strong ground motion, its amplitude seemed relatively
constant and, although the ride was bumpy, I had no problem
steering the truck into the open area. It seemed the worst was
over, but as I stopped the truck again, the amplitude of shaking
abruptly increased. In less than a second, the truck was rocking
so violently I lost sight of everything outside and could do
nothing but hold on to the steering wheel and hope my flying
head didn’t strike anything. This violent phase was brief, per-

haps 5 to 7 seconds, but long enough to give me a mild whip-
lash strain in my neck and bring on several unpleasant
thoughts. I had the impression no structure could withstand this
for long, and this was quickly turning from an exciting profes-
sional experience to a survival situation. I remembered I was
next to an oil tank farm and had a visualization of the huge oil
fire in Valdez, Alaska, after the 1964 quake, which I could
have done without.

When it eased enough for me to be able to look around
again, perhaps 25 to 30 seconds after the strong shaking began,
I saw the dozen or so 60-to-70-meters (70–80 yards)-tall cargo
cranes that line the waterways of Harbor Island quivering and

Figure 1. Sand volcanoes (medium sand) in Marathon Park near

Capitol Lake in Olympia. Photo by Joe Dragovich.

Figure 2. Sand boils (incipient lateral spread) at the Port of Olympia in

an area with several boils and extensive cracking. Photo by Hank

Schasse.
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flexing in place, resembling huge steel giraffes trying to dance.
I remember hoping no one was in them. It was at least another
minute before I felt safe enough to get out of the truck. Outside,
there was a pervasive background din of car and industrial
alarms going off all over the city. I walked over to a crew of
Arco people in hardhats about 100 meters (100 yards) away to
see if they were all right. As I walked over to them, I could
plainly feel the asphalt gently moving back and forth with
about a 2 to 3 second period under my feet; they could too. We
traded our stories for a short time, perhaps 2 to 3 minutes, then I
walked back to the truck. At this time I could still feel subtle
ground motion if I stopped walking.

Since my cell phone was out and I no longer felt in danger
there, I thought I might as well get the data from the K2, espe-
cially now! I estimate that what happened next occurred at
least 5 minutes after the onset of strong shaking at that point,
perhaps as long as 10 minutes, but that’s probably an upper
limit.

I had just opened the side door of the Suburban to get my
laptop and notebook when I was distracted by a wet swishing
sound coming from the ground nearby. I looked over to its
source and saw a smooth dome of brown fluid, perhaps half a
meter (1.5 feet) wide and high, issuing from the ground a few
meters away from the southeast corner of the fire control house
where the K2 was located. This dome lasted perhaps two sec-
onds, then grew and burst into a muddy geyser. The geyser is-
sued three or four very fluid splashes over the next few sec-
onds, about a meter (yard) high each, then it widened and col-
lapsed into a column about a half meter wide that discharged a
tremendous volume of muddy water. This flood emerged much
faster than it could spread, so that within a few seconds the
flow front had become a surge several centimeters high, like a
small wave traveling up a dry beach. Its velocity was nearly 1
meter (yard)/second as far as I could tell. Within an estimated
30 seconds, the surge had grown into a shallow rotating pool
about 6 or 7 meters (6–7 yards) across with bits of suds floating

on it, still vigorously fed by the column of water at the original
breakout site.

I confess I didn’t think it was a liquefaction feature at all;
the delayed onset, the limited amount of sediment in the water,
and the high flow rate convinced me it was a water main
break—particularly as it occurred near a building containing
fire control equipment. In fact, I was annoyed because I
thought the growing pool might engulf the driveway and strand
me there or prevent me from getting to the K2 and downloading
data! The feeder column remained centralized at the breakout
site but began to gradually wane after a couple of minutes. I
walked over to get a closer look and was surprised to find the
water was relatively clear; I could see to a depth of several
centimeters in the pond.

Unfortunately, I paid no further attention to it and focused
on the K2 in the fire control house. When I left the site about 90
minutes later, I noticed that the column had dwindled to a dis-
turbed patch of water in the now-quiet pool, which had approx-
imately doubled in size.

After learning that this was indeed a sand blow (Figs. 1 and
2), I returned to the site as soon as time allowed—about 3 days
after the quake. Its deposit consisted mostly of dark sand-sized
material, much coarser than the fine muds emitted by similar
features along First Avenue South (Pioneer Square area in Se-
attle). This may explain why the eruption was so fluid—the
sand quickly settled out of the water. The main vent area had
been filled in with gravel by Arco and the area covered by emit-
ted sand was approximately 16 meters (16 yards) in maximum
diameter. I was surprised to see several other vents in the sand
(closer to where my truck had been!). These may have contrib-
uted to the tremendous surge of ground water that emerged af-
ter the collapse of the geyser, but were submerged before they
were ever visible. It’s also possible that they vented after I left.

I was luckier to get out of there than I realized. Subsurface
piping had opened an oblique collapse pit about 1 meter (1
yard) in diameter and of uncertain depth only a few meters
from where my truck had been parked. �

In Memoriam: Barbara Ann Bjorkman Preston

Barbara Ann (Bjorkman) Preston passed away in her home
Thursday, January 11, 2001, of natural causes. She is sur-

vived by her mother Ingrid Morris, her daughter Tiffany L.
Preston, and her two sons, Alan Preston and Robbie Preston, all
of Olympia, and her two brothers Robert Bjorkman of
Faribault, Minnesota, and Leif Dahl of Richmond, Virginia,
and many nieces and nephews. She was born February 19,
1947, in Hinesville, Georgia, to Ingrid Morris and Oscar
Bjorkman. In the spring of 1948, the family moved to Califor-
nia, later to Oregon, and finally to Olympia in 1953. She at-
tended Garfield and Boston Harbor grade schools and Jeffer-
son Junior High, and graduated from Olympia High School.
She earned her Associate of Arts degree from Centralia Com-
munity College and later her Bachelor of Arts degree from
Central Washington University. She began her state employ-
ment with the Department of Licensing and worked for the
State of Washington for the past 23 years. She worked for the
Department of Natural Resources and the Division of Geology
as office manager for 13½ years, and for the past seven years
worked for the Washington Health Care Authority.

Barbara was an exceptional human being. She had a great
sense of humor and always found the humor in every situation.
She spent a few years popping in on local parades around the
state as Borky the Clown with the infamous Walter the Wonder

Dog. She was truly funny and loved by so many! She was ex-
tremely intelligent and always sought after for her words of
wisdom, encouragement, and wit. Those of us who knew and
loved her were honored and blessed to have been a part of her
life. Barb set an example for us all. She was the salt of the
earth…she was the best. We will miss her. �

GUIDE TO ‘BEST AVAILABLE SCIENCE’

The Revised Code of Washington (RCW 36.70A.172) re-
quires that the ‘best available science’ be used when desig-
nating and protecting environmentally critical areas. For
those still trying to figure out what ‘best available science’
means, there is “A State Official’s Guide to Sound Science”
by C. J. Lackey, Malissa McAlister, H. H. Bakondy, and
Barry Tonning. This is a user-friendly, non-technical guide
to sound science and public policy. It features quick-refer-
ence lists of questions and of “warning signs” to recognize
unreliable research. Published by The Council of State Gov-
ernments in 1999, it is 28 pages in length. It may be
purchased on the web for $20.00 at http://www.statesnews.
org/store/.
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Earthquake Prediction

Ruth Ludwin

University of Washington

Geophysics Program, Seismology Lab

Seattle, WA 98195-1650

Because of their devastating potential, there is great interest
in predicting the location and time of large earthquakes.

Although a great deal is known about where earthquakes are
likely, there is currently no reliable way to predict the days or
months when an event will occur in any specific location.

Each year there are about 18 earthquakes magnitude (M)
7.0 or larger worldwide. Actual annual numbers since 1968
range from lows of 6 to 7 events a year in 1986 and 1990 to
highs of 20 to 23 events a year in 1970, 1971, and 1992. Al-
though we are not able to predict individual earthquakes, the
world's largest earthquakes do have a clear spatial pattern, and
“forecasts” of the locations and magnitudes of some future
large earthquakes can be made. Most large earthquakes occur
on long fault zones around the margin of the Pacific Ocean.
This is because the Atlantic Ocean is growing a few inches
wider each year, and the Pacific is shrinking as ocean floor is
pushed beneath Pacific Rim continents. Geologically, earth-
quakes around the Pacific Rim are normal and expected. The
long fault zones that ring the Pacific are subdivided by geo-
logic irregularities into smaller fault segments that rupture in-
dividually. Earthquake magnitude and timing are controlled by
the size of a fault segment, the stiffness of the rocks, and the
amount of accumulated stress. Where faults and plate motions
are well known, the fault segments most likely to break can be
identified. If a fault segment is known to have broken in a past
large earthquake, recurrence time and probable magnitude can
be estimated based on fault segment size, rupture history, and
strain accumulation. This forecasting technique can only be
used for well-understood faults, such as the San Andreas. No
such forecasts can be made for poorly understood faults, such
as those that caused the 1994 Northridge, California, and 1995
Kobe, Japan, quakes. Although there are clear seismic hazards
in our area, Pacific Northwest faults are complex, and it is not
yet possible to forecast when any particular fault segment in
Washington or Oregon will break.

Along the San Andreas Fault, the segment considered most
likely to rupture is near Parkfield, California. In the last cen-
tury it produced a series of identical earthquakes (about M 6.0)
at fairly regular time intervals. USGS scientists are monitoring
Parkfield for a wide variety of possible precursory effects.
Using a set of assumptions about fault mechanics and the rate
of stress accumulation, the USGS made a more precise
Parkfield prediction—of a M 6.0 earthquake between 1988 and
1992.

Though that prediction was not fulfilled, a M 6.0 earth-
quake is still expected at Parkfield. “Capturing” the Parkfield
earthquake in a dense network of instrumentation will estab-
lish whether precursory effects exist and give new insights on
the mechanics of fault rupture. The segment of the San Andreas
fault that broke in the 1989 M 7.1 Loma Prieta or “World Se-
ries” earthquake had been identified by the USGS as one of the
more likely segments of the San Andreas to rupture. Magnitude
5+ earthquakes 2 and 15 months before the damaging earth-
quake were treated as possible foreshocks, and the USGS is-

sued five-day public advisories through the California Office
of Emergency Services. Even in areas where foreshocks are
fairly common, there is no way of distinguishing a foreshock
from an independent earthquake. In the Pacific Northwest,
there is no evidence of foreshock activity for most historic
earthquakes.

One well-known successful earthquake prediction was for
the Haicheng, China, earthquake of 1975, when an evacuation
warning was issued the day before a M 7.3 earthquake. In the
preceding months, changes in land elevation and ground water
levels, widespread reports of peculiar animal behavior, and
many foreshocks had led to a lower-level warning. An increase
in foreshock activity triggered the evacuation warning. Unfor-
tunately, most earthquakes do not have such obvious precur-
sors. In spite of their success in 1975, China had no warning of
the 1976 Tangshan earthquake, magnitude 7.6, which caused
an estimated 250,000 fatalities.

Earthquake prediction is a popular pastime for psychics
and pseudo-scientists, and extravagant claims of past success
are common. Predictions claimed as “successes” may rely on a
restatement of well-understood long-term geologic earthquake
hazards or be so broad and vague that they are fulfilled by typi-
cal background seismic activity. Neither tidal forces nor un-
usual animal behavior have been useful for predicting earth-
quakes. If an unscientific prediction is made, scientists can not
state that the predicted earthquake will not occur, because an
event could possibly occur by chance on the predicted date,
though there is no reason to think that the predicted date is
more likely than any other day. Scientific earthquake predic-
tions should state where, when, how big, and how probable the
predicted event is, and why the prediction is made. The Na-
tional Earthquake Prediction Evaluation Council reviews such
predictions, but no generally useful method of predicting
earthquakes has yet been found.

It may never be possible to predict the exact time when a
damaging earthquake will occur, because when enough strain
has built up, a fault may become inherently unstable, and any
small background earthquake may or may not continue ruptur-
ing and turn into a large earthquake. While it may eventually be
possible to accurately diagnose the strain state of faults, the
precise timing of large events may continue to elude us. In the
Pacific Northwest, earthquake hazards are well known and fu-
ture earthquake damage can be greatly reduced by identifying
and improving or removing our most vulnerable and dangerous
structures.
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BOOK REVIEW: Hiking Washington’s Geology

by Scott Babcock and Bob Carson
ISBN 0-89886-548-4

2000, softcover, $16.95 U.S.
published by The Mountaineers

1001 SW Klickitat Way, Suite 201
Seattle, WA 98134

mbooks@mountaineers.org
www.mountaineersbooks.org

Do you enjoy walking in the outdoors? Do you ever wonder
about the age and origin of the rock formations you are hik-

ing across? Perhaps, once the summit is obtained, you ponder
the varied landscape below, speculating upon the intricacies of
its formation? If you answered yes to one or more of these ques-
tions, you may enjoy picking up a copy of the
recently published Hiking Washington’s Ge-
ology. Authors and geology professors Bab-
cock (Western Washington University) and
Carson (Whitman College) combine their col-
lective knowledge of and expertise in the re-
gional geology of Washington State to deliver
a first-rate guidebook for the hiking geology
enthusiast.

Hiking Washington’s Geology contains
fifty-six different hikes extending to all four
corners of the state. The book divides the state
into seven regions: Coast Ranges, Puget Low-
land and the San Juan Islands, North Cas-
cades, South Cascades, Columbia Basin, Oka-
nogan Highlands, and Blue Mountains. There
are between four and thirteen hikes in each re-
gion. As the authors state, “[t]hese fifty-six
hikes have been selected with the intent of covering all regions
and as many rock types and landforms as possible.” They do
just that. The hikes are as varied as Washington’s geologic his-
tory and outcrops, ranging from a short wheelchair-accessible
stroll through the enigmatic Mima Mounds of south Puget
Sound to a more strenuous 10-mile backpack to Copper Ridge
in the heart of the North Cascades, to a relatively easy walk

along the deeply incised meanders of the Grande Ronde River
in the Blue Mountains of southeastern Washington.

The book begins with sections on “Gearing Up For Field
Geology” and “Geology 101: What you need to know to read
the rocks of Washington”. The latter is a synopsis of the basic
principles of geology, covering topics such as geologic time,
landforms, volcanism, tectonism, and agents of erosion and
landscape change. The book is well illustrated and contains
eighty-five photos, numerous detailed maps and thoughtfully
drafted figures. Each chapter focuses upon a particular geo-
graphic region, beginning with an overview of the geologic
history, including the rock types to be found and the tectonic
and geomorphic events important in shaping the landforms of
the specific region. A glossary of important terms from the text

and bibliographic references for further study
are found at the end of the book.

Individual hikes were well thought out and
researched by the authors. Hike descriptions
begin with necessary information such as hike
distance, assessed level of difficulty, appropri-
ate topographic and geologic maps, and key
references. The geologic landscape pertaining
to each hike is described in simple and under-
standable prose. The trail guide for each hike is
detailed and easy to follow. The authors con-
tinually ask the readers to do more than merely
walk down a trail, rather encouraging active
engagement in seeking out and understanding
the surrounding geologic and biologic world.

This is a guidebook that will be enjoyed by
both recreational and professional students of
geology and natural history, by earth science

teachers and their students, and by parents and their children.
Hiking Washington’s Geology is a book that encourages one to
experience, enjoy, and learn from the varied and complex geo-
logic history of Washington State.

Karl W. Wegmann

Washington Division of Geology & Earth Resources

MAP OF MISSOULA FLOODS
BACK IN PRINT

The second printing of Jeff Silkwood’s map of “Glacial
Lake Missoula and the Channeled Scabland” is now avail-
able. The map is published by the Regional Office of the
Forest Service in Missoula. To order directly from the Re-
gional Office, contact Kathy Daugherty at (406) 329-3511.
The price is $6.00, plus $3.50 for shipping and handling;
several copies can be sent with only one shipping charge.
Sheet size is 36.75 inches x 45.5 inches. The maps are
mailed rolled, not folded. Dealers should contact Jim Polich
at (406) 329-3209 for information on vendor sales arrange-
ments. The map is also available over the counter at the sales
outlets at Lake Roosevelt National Recreation Area in
Washington and Farragut State Park in Idaho.
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The Charlatan Game

Matthew A. Mabey

Brigham Young University

PO Box 24698; Provo, UT 84602

The next time you get together with your friends or take a
coffee break, you can really impress people. You too can

make earthquake predictions and be 100 percent accurate.
Here’s how:

There are three components to an earthquake prediction.
Those three components answer the questions, when?, where?,
and how big? All you have to do is make vague predictions
whose components will be fulfilled by normal earthquake ac-
tivity.

So here are the four earthquakes you can predict and get it
right every time.

1. There will be a magnitude 5 or 6 earthquake in Los Angeles.
(The when is just sometime in the future, and you probably
mean the Los Angeles region, but when that earthquake
happens, those details won’t matter.)

2. There will be an earthquake in Japan next month. (Leave the
size unstated but, if pressed, say a big one. If pressed fur-
ther, say at least a magnitude 4 and consider getting some
less picky friends.)

3. There will be an earthquake of at least magnitude 6 in the
next two weeks. (The where is left unstated, but ‘some-
where on Earth’ is the answer. What do they want? You’re
new at this!)

4. There will be an earthquake in southern California in the
next 48 hours. (It could be any size. You will probably have
to contact the various seismic research organizations in
California to find out exactly where and how big it was be-
cause it likely won’t be big enough to make the news. But
trust me! It will happen! If the earthquake is actually in, for
example, Palm Springs, that is close enough to take credit.
Is two weeks or a month (or two or three) too long to sleep
in a tent in your back yard in order to be safe from a big
quake?)

Then just sit back and wait. In two days, your skeptical
friends may call you. In two weeks, they’ll start thinking
“Maybe this is for real.” In a month, they’ll really be pressing
you for your secret, and when that earthquake hits Los An-
geles, they’ll be on the phone for sure!

The technique has three components that make it work.
First, earthquakes are more frequent than people realize. There
are lots of earthquakes, even ‘big’ ones, all over the world ev-
ery month. Most simply never make the headlines. Second, the
vast majority of earthquakes occur in very narrow, specific re-
gions of the world. Third, this technique relies on being vague
about one of the three essential characteristics of a useful pre-
diction. Remember the three characteristics were (1) Where
will the earthquake be located?, (2) When will the earthquake
occur?, and (3) How big will the earthquake be?

Every year, worldwide, there are about:

6,200 magnitude 4 to 4.9 earthquakes,
800 magnitude 5 to 5.9 earthquakes,
120 magnitude 6 to 6.9 earthquakes,
18 magnitude 7 to 7.9 earthquakes

(U.S. Geological Survey, National Earthquake Information
Center, http://wwwneic.cr.usgs.gov/neis/eqlists/eqstats.html).

Most of these earthquake are concentrated along narrow
bands that coincide with the boundaries of the tectonic plates
that make up the earth’s rigid outer surface. It is the movement
of these plates that gives rise to earthquakes, so it’s easy to
know where earthquakes occur most often. It’s easy to know
how frequent they are. Finally, we know that the bigger earth-
quakes are less frequent than smaller ones. The vagueness of
the timing for the first prediction is because the bigger earth-
quakes are much less frequent.

I first devised the Charlatan Game in Spring of 1993. At the
time, I was the Geotechnical Earthquake Specialist for the Ore-
gon Department of Mineral Industries. On March 28, 1993, a
magnitude 5.3 earthquake occurred 34 miles south of Portland,
Oregon, causing a moderate amount of damage, only a couple
of minor injuries, and no deaths. (For more information on the
Scotts Mills earthquake, see http://www.geophys.washington.
edu/SEIS/EQ_Special/ScottsMills/scottsmills.html.) Shortly
after the earthquake, reports began appearing in the media
about someone having predicted the earthquake. Although the
details have always remained in the shadows, it appears that
someone did indeed predict something for that general time
frame somewhere in the Pacific Northwest of some magnitude.
But given what is known about the prediction, it is obvious that
the magnitude was supposed to have been greater and the loca-
tion wasn’t supposed to have been in the remote foothills of the
Cascades.

But I took note of these reports because I had witnessed the
circus and frenzy created by another prediction a few years ear-
lier. I thought I had learned some lessons from those events,
and I didn’t want to repeat the mistakes.

In Memphis in 1989, Iben Browning, a New Mexico ‘cli-
matologist’ who sold long-range weather forecasts to busi-
nesses, was quoted in The Commercial Appeal as predicting
that something called ‘earth tides’ could cause an earthquake
in the New Madrid seismic zone on or around December 3,
1990. The New Madrid zone runs through parts of Illinois,
Kentucky, Missouri, Tennessee, and Arkansas. While the main
focus always remained on the New Madrid area, the media cov-
erage and Iben Browning himself spread the threat around the
world in the ‘middle latitudes’. (For the full story, see
http://www.journalism.indiana.edu/Ethics/day.html.)

As I watched this circus unfold, I wondered why those who
knew better and knew the New Madrid region weren’t in front
of the cameras debunking this prediction. Eventually the ex-
perts did respond, but too little and too late (see Gori, 1993;
Spence and others, 1993). Schools closed, businesses closed,
and events were canceled. Stores did a land-office business in
earthquake supplies. My students from the New Madrid area
still vividly remember the fiasco. Iben Browning has since
passed away.

So my response has been to try and keep ahead of unsub-
stantiated claims of earthquake predictions. Media references
to earthquake prediction were beginning to die down when the
Northwest Timber Summit came to Portland in April of 1993.



30 Washington Geology, vol. 28, no. 3, May 2001

During the summit, numerous luminaries were in Portland,
including the President of the United States. While the Presi-
dent was in town a ‘rumor’ started. The details of this rumor are
even more shadowy than those surrounding the Scotts Mills
earthquake. I will only comment on my first-hand experience. I
spent an entire day on the phone answering calls from emer-
gency response leaders and workers in both the public and pri-
vate sectors. They wanted to know what was the basis for the
prediction they were being asked to respond to and if it was
credible. When I wasn’t getting calls, I was making calls, try-
ing to find out the source of all the hoopla. The prediction and
the stir it caused did make the news, but as a secondary story. I
think our fast and decisive action in informing the public about
the unreliability of earthquake prediction prevented a Pacific
Northwest version of the Iben Browning incident.

As we predicted, there was no earthquake, but I do have a
few gray hairs I attribute to that day. I devised the Charlatan
Game to help people understand why other people can appear
to predict earthquakes even when they really can’t.

By the way, when you’re predicting, refuse to talk about the
dozens of magnitude 5, 6, and 7 earthquakes that happen
around the world each month that you don’t predict with this
technique. What does it matter if you miss a few, as long as you
are 100 percent accurate on the ones you do get? This is a harm-
less game really, isn’t it? What could possibly go wrong? Is
anyone being hurt? After all, the Chinese saved lives in 1975

by getting one earthquake prediction right. That must have
been comforting to the more than 250,000 who died in an
unpredicted Chinese earthquake in 1976.

The fact of the matter is that unless you want to become a
homeless, jobless refugee after an earthquake, the solution
isn’t predicting earthquakes, but preparing for them. This Feb-
ruary’s Nisqually quake that shook the Puget Sound region is a
perfect example. If the earthquake had been predicted, the
death toll would likely have been the same (or bigger if anyone
panicked). But what if the citizens and leaders of Washington
had been lulled into complacency by someone claiming the
ability to predict earthquakes? Maybe, in order to save money,
the bridges and buildings would not have been strengthened or
built to resist earthquakes. Just think how much more disrup-
tive the earthquake could have been, even if the deaths and in-
juries were equally minimal.

There are precursors to earthquakes. We can’t yet use them
to reliably or usefully predict earthquakes. Some day we may
very well be able to. But even then, the correct response will be
to get your own 72-hour emergency kit together, bolt that hot
water heater to the wall, establish a family plan, and know how
to duck, cover, and hold on. We will still want to build to resist
earthquakes. Once you’ve done these things, you can relax and
enjoy life with or without predictions.

Besides, now YOU can ‘predict’ earthquakes.
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school, in case the big one hit. It may be that this type of rumor is a predictable re-
sult of post-traumatic stress disorder from an earthquake. I know I still jump
whenever the building shudders, and I was on the first floor where the shaking
was relatively mild compared to what they felt on the upper floors. �

THE PERILS OF QUAKE PREDICTION

Betty Avila, Front Desk

Washington Division of Geology and Earth Resources

PO Box 47007; Olympia, WA 98504-7007

The weekend after the quake, a friend called our house,
very upset, and said he heard some guy on TV or over the
Internet [Jim Berkland] predict a magnitude 9 earthquake
will happen on March 6, and he’s supposed to be right 9
times out of 10. “Is that true?” he asked.

Monday was when the phones really started ringing. A
woman caller stated, “My daughter came home from
school saying there’s going to be a magnitude 9 earth-
quake. Can we survive an earthquake that big? What
should we do?” She was practically crying. I tried to calm
her down and told her we have no reliable way of predict-
ing earthquakes. She said I made her feel better. I sent her
earthquake information and the flyer on earthquake
prediction from the UW (see p. 27.)

A woman from the Hands On Children’s Museum came
in saying her daycare parents were frantic because they
heard that some guy on National Public Radio said there
was going to be a magnitude 9 quake. I called both the local
and national NPR and visited their websites, and although
they had interviews with scientists, there was nothing
about a 9-point quake prediction. How do these rumors get
started? I gave her a printout of Berkland’s website to post
at the museum. “Would you believe a prediction from this
man,” I asked. She agreed that posting the printout so they
could see where the prediction was coming from would be
very reassuring to the parents.

A group of freaked out people came in from upstairs
(third floor, I think) and said, “You guys can predict earth-
quakes, can’t you? You’ve got to tell us more about this
prediction. We need an alarm!”

Puget Sound Landslides Website

The Washington Department of Ecology has a new Puget
Sound landslides website. The site contains information about
how landslides occur, who to go to for help, how to recognize
landslides, and how to reduce risks from them. The site is
aimed primarily at coastal property owners, real estate profes-
sionals, shoreline consultants, and local governments, but
should be useful to a variety of other folks as well. Although fo-
cused on Puget Sound bluffs, much of the information is appli-
cable to steep slopes and landslides in other environments, too.

Besides plenty of information and pictures, the site in-
cludes the slope stability maps from the Coastal Zone Atlas,
which still serve as a standard reference for many local ordi-
nances. The project was supported financially by FEMA.

Puget Sound landslides website:
http://www.ecy.wa.gov/programs/sea/landslides/

Other DOE website worth visiting are the shoreline air pho-
to and Puget Sound shorelines websites:

http://www.ecy.wa.gov/apps/shorephotos/
http://www.ecy.wa.gov/programs/sea/pugetsound/
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Introduction

The geomorphic processes that create dune ridge systems simi-
lar to the one along the coast of southwestern Washington have
been described as the result of an abundant sand supply inter-
acting with shoreline vegetation (Johnson, 1919; Cooper,
1958). In addition to these processes, the dunes of southwest-
ern coastal Washington are influenced by subduction zone
earthquakes. During these seismic events, there is commonly
an apparent abrupt sea level rise of 1 to 2 m (3–6 ft) created by a
belt of coseismic subsidence (Atwater, 1987; Meyers and
others, 1996). The apparent rise in sea level moves the shore-
line landward, eroding a scarp into the existing dunes.

In the Grayland area of the central Washington coast
(Fig. 1), there is a dune system of beach-parallel ridges that has
been investigated as part of a regional survey using ground-
penetrating radar (GPR), vibracores, and sand auger samples.
The dune system is dominated by a large (15–18 m or 50–60 ft

high) continuous dune ridge that extends for 21 km (13 mi)
across the entire interbay area. This unusually high dune was
created by seismic events that reactivated dune-forming pro-
cesses and essentially put a new dune on top of an older dune.

Dune Ridge Systems

Dune ridge systems are formed on prograding shorelines
(shorelines building out into the sea) where there is an abun-
dance of sand. The formation process is aided by pioneering
beach plants that trap the blowing sand. As the shoreline
progrades, new ridges form and are vegetated, causing the old
ones to be cut off from their sand supply.

Since the introduction of European beach grass in the
1930s, the dune-building process in southwestern Washington
has become more efficient because this grass is far more effec-
tive at trapping sand than native plant species (Wiedemann and
Pickert, 1996). Native grasses were also able to form dune
ridges, though more slowly, as one can observe from the older
ridges in the dune ridge systems.

On passive margins, sand supply and dune grasses tend to
produce dunes that are evenly spaced and about the same
height. In the Grayland area, where the dune height and posi-
tion are tectonically influenced, there is one dune that is signif-

icantly higher than the others and cuts
across some of the older dunes. It is lo-
cally called the ‘Big Dune’ (Fig. 2) and
is similar to what Cooper (1958) called
‘dune A’. The origin of the Big Dune is
the topic of this article.

Earthquakes

Meyers and others (1996) and Doyle
(1996) first described the relationship
between great subduction zone earth-
quakes and the beaches of southwestern
Washington. Specifically, they showed
that the coseismic subsidence associated
with such earthquakes creates an ero-
sional scarp inland. These scarps be-
come the depositional sites for heavy
mineral placers, which can be seen on
GPR images of the subsurface (Fig. 4).
The dates of the last several earthquakes
are well known from work in the nearby
estuaries (Atwater, 1997; Yamaguchi

and others, 1997). The scarps therefore represent time lines
that can be traced along the beaches of southwestern Washing-
ton. At many locations, the dune ridges lie along these scarps as
well. Such is the case with the Big Dune, which lies over the
scarp formed 1100 years ago by a great subduction zone earth-
quake and east of the most recent earthquake scarp.
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The relationship between the dunes,
scarps, and earthquakes is simply this:
Three hundred years ago, a great sub-
duction zone earthquake occurred. This
earthquake was accompanied by a belt
of coseismic subsidence of 1 to 2 m (3–
6 ft) and a tsunami. At the beach, the
subsidence manifested as an abrupt rise
in sea level that eventually cut an ero-
sional scarp. The tsunami sent a series
of large waves surging inland, tearing
up existing vegetation, as well as trans-
porting sand inland from offshore. The
tsunami provided sand for wind trans-
port to reactivate the dune ridges.

In the case of the Big Dune, this
fresh supply of sand piled on top of the
existing dune, reactivating it. At both
ends of the Grayland plains, where the
Big Dune is exposed by beach erosion
and sand mining, there are buried soils
or paleosols. These paleosols represent
reactivation surfaces buried by eolian
sand made available for transport some
time after the tsunami. The reason the
Big Dune is higher than the rest is that it
is really two dunes stacked one on top
of the other (Fig. 5).

At the same time this was happen-
ing, the scarp from the earthquake 300
years ago was forming at the edge of the
beach and another dune was starting to
build over it. West of that dune and
scarp, subsequent dunes continue to
prograde and wait for a future seismic
event (Fig. 6).

Timing

Studies of the Big Dune where it is exposed by erosion reveal a
stratigraphic sequence of placer and beach deposits topped by
an eolian sand and overlain by a paleosol (Fig. 5). The paleosol
is covered by younger eolian sand. Rooted in the paleosol and

buried by the younger eolian sand is a large spruce that was
buried as the dune migrated landward. The 14C kill date on the
tree (BETA 22386) is compatible with the time of the last great
subduction earthquake 300 years ago. This date, taken from
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Figure 2. View from the south showing a cross section through the Big Dune. New forest is on the

left and older trees are on the right. (See Fig. 6D.)
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Figure 5. An idealized cross section of the Big Dune.

Figure 3. Author Jim Phipps with a buried

tree in the Big Dune. (See Fig. 5.)
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wood near the center of the tree (ap-
proximately 40 rings in from the bark),
is 190 ±70 years B.P. The 190 years,
plus 40 years for the rings, plus 50
years (for radiocarbon dates the present
is A.D. 1950) equals 280 calendar
years, a date that is well within the ±70-
year error bar. In addition, the tree did
not die instantly. Narrow growth rings
next to the bark show that it died sev-
eral years after the earthquake, so one
would expect a slightly younger kill
date for the tree.

Conclusions

The dune ridge system of southwestern
Washington has been altered by the
events associated with great subduction
zone earthquakes. These earthquakes
are accompanied by 1 to 2 m of coseis-
mic subsidence, as well as tsunamis.
The beaches respond by eroding inland,
forming scarps, and reactivating older
dune ridges. In recent, tectonically sta-
ble times, the beaches have prograded
as they would on a passive margin.
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Kirk Bryan Award Presented to
Brian F. Atwater and Eileen Hemphill-Haley

Citation by John J. Clague1

The Kirk Bryan Award recognizes an
outstanding contribution in the field of
Quaternary geology and geomorphol-
ogy. It is my distinct pleasure, on behalf
of GSA’s Quaternary Geology and Geo-
morphology Division, to present the
award this year to Brian Atwater and
Eileen Hemphill-Haley for their splen-
did monograph Recurrence intervals for
great earthquakes of the past 3,500
years at northeastern Willapa Bay,
Washington (U.S. Geological Survey
Professional Paper 1576, published in
1997).

I can think of no more important and
influential publication in Quaternary
science in recent years than USGS Pro-
fessional Paper 1576. It is a summary of
a decade of careful, innovative research
by Atwater and Hemphill-Haley on the
geologic record of great earthquakes in
southwestern Washington. If you wish to
show students how science should be
done, have them read USGS Profes-
sional Paper 1576.

I remember Brian commenting to me
in 1985 or 1986, after one of his first for-
ays into the muddy tidal marshes at Wil-

lapa Bay, that he thought he had found
evidence for repeated sudden coseismic
subsidence of the land, but that he wasn’t
sure he believed the implications of what
he had seen. Brian is not a scientist who
jumps to conclusions or cuts corners
testing a hypothesis. He spent summer
after summer in the late 1980s and 1990s
documenting in extraordinary detail
physical evidence of recent, very large
earthquakes. To do this, he enlisted the
help of Eileen Hemphill-Haley, a diatom
paleoecologist. At first blush, Brian and
Eileen would appear to be an odd couple,
scientifically speaking, yet their collab-
oration proved to be critical to demon-
strating that the region had experienced
repeated large earthquakes. Eileen
showed, through analysis of fossil dia-
toms and comparison of fossil and mod-
ern diatom assemblages, that the buried
marsh and forest soils that Brian mapped
in tidal channels at Willapa Bay had sub-
sided abruptly 1 to 2 m during earth-
quakes. She also showed that the sand
layers that directly overlie some of the
soils contain marine diatoms, indicating
landward transport and deposition of
coarse sediment. This proved to be a crit-
ical piece of evidence for a tsunami ori-
gin for the sand layers.

USGS Professional Paper 1576 is a
comprehensive document, far exceeding
in scope what can be presented in a jour-
nal paper. To their credit, Brian and
Eileen took the time to present the
wealth of their findings in a single publi-
cation rather than slicing it up, salami-
style, in a series of shorter, less complete
journal papers. The monograph is, how-
ever, more than thorough, well-argued
science; it’s a great read—the writing is
elegant and illustrative material is beau-
tiful.

I can’t overemphasize the impact
that Brian and Eileen’s research has had
on our understanding of earthquakes in
the Pacific Northwest. Improved public
awareness of earthquake hazards in the
region is rooted, in part, in their work.
Brian was one of only a few geologists
working on earthquakes in the Pacific
Northwest when the USGS transferred
him to Seattle in 1985. Today, scores of
government and university researchers,
private-sector geologists, and students
are working on Cascadia earthquakes,

and most of them have been encouraged
and supported by Brian.

USGS Professional Paper 1576 ex-
emplifies how seamless basic and ap-
plied geoscience can be and, further,
how important Quaternary geoscience is
to society. The contribution that Brian
and Eileen have made to our understand-
ing of Cascadia earthquake hazards has
proved to be vital.

Let me close with a few anecdotes of
a more personal nature. Brian is a well-
known figure in the communities around
Willapa Bay. Most local residents re-
member the man with the white hat pad-
dling his canoe up and down every tidal
channel around the bay. This man went
out of his way to tell people what he was
doing and why, and he explained to them
how all those tree stumps rooted in tidal
muds in the bay came to be. Anyone who
has ever done field work with Brian
learns very quickly to either stand back
as he cleans off an outcrop or be hit by
flying mud—he’s a human backhoe.

Also, if you stay in Brian’s field camp,
you will at some time be included in the
bread-baking detail. Brian turns up his
nose at the store-bought stuff, and late in
the evenings somebody, often Brian,
bakes fresh bread for sandwiches the
next day. Finally, Brian always has
chocolate on hand to make cocoa on cold
mornings. God help you if you get be-
tween Brian and his chocolate!

Eileen met Brian at the first special
session on Cascadia earthquake research
at the American Geophysical Union
meeting in San Francisco in 1987. At

Brian F. Atwater

Eileen Hemphill-Haley

1 Award presented at Summit 2000: GSA An-
nual Meeting and Exposition, Nov. 9–16,
2000, in Reno, Nevada, by Dr. John J. Clague.
Dr. Clague is Shrum Research Professor in
the Department of Earth Sciences at Simon
Fraser University in Burnaby, British Colum-
bia. He is one of Canada’s leading authorities
in Quaternary and environmental earth sci-
ences.
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that time, she was a graduate student at
the University of California at Santa
Cruz and was employed by the USGS.
Up until then, all her research experience
had been in Quaternary paleoclimatol-
ogy working with the Marine Branch of
the USGS. Her original plans for Ph.D.
research weren’t working out, and she
was shopping for another project. She in-
troduced herself to this forceful scientist
with what many people at the AGU ses-
sion considered outlandish ideas. Brian
suggested that perhaps Eileen would like
to look at a few samples from Willapa
Bay, and the rest, as they say, is history.
Eileen liked the idea of applying paleon-
tology to paleoseismology, so she began
working full time on the project the fol-
lowing summer. Eileen no longer works
for the USGS, although she continues
her collaboration with Brian to this day.
After leaving the government, Eileen
has pursued a career in music and is an
accomplished singer and songwriter.
Her songs are unusual and beautiful.
Check them out on one of her CDs or her
website, www.h2tunes.com.

With Recurrence intervals for great
earthquakes of the past 3,500 years at
northeastern Willapa Bay, Washington,
Brian and Eileen have shown what Qua-
ternary scientists can contribute to both
science and society. I present to you the
2000 recipients of the Kirk Bryan
Award, Brian Atwater and Eileen
Hemphill-Haley.

Response by

Eileen Hemphill-Haley

It is my great honor, along with Brian
Atwater, to receive the 2000 Kirk Bryan
Award. My sincerest thanks to the Qua-
ternary Geology and Geomorphology
Division of GSA for this recognition.
As wonderful as it is to receive this
award, the greatest joy for me has been
the opportunity to participate in about a
decade’s worth of research on problems
I have found engaging, and with people I
admire. My work with Brian along Wil-
lapa Bay represents our initial attempts
to apply micropaleontology to aspects
of Quaternary paleoseismology, and
helped to lay the groundwork for a series
of additional studies focusing on earth-
quakes and tsunamis along the Cascadia
margin. I have nothing but the highest
regard for Brian and won’t embarrass
him by expounding about it too much.
But it is significant that, at his request, I
have slogged through knee-deep mud in
search of the perfect sample and have on
many occasions gotten up before God to
beat the tides. Believe me, these are not

things that I would do for many people.
But I’m happy for the work we’ve done
together in the past and have no doubt
that we will continue to figure out ways
to work together in the future.

Looking back over the past years,
there are a number of people who helped
me along the way, and for whose support
I am grateful. I had several mentors at
the USGS, including James V. Gardner,
Michael Field, and John Barron. Denise
Armstrong and Carter Borden made im-
portant contributions to the project. But
of the many people with whom I have
worked or conferred, there are two I es-
pecially want to acknowledge for their
help and friendship. The first worked
with me through a student appointment
at the USGS, and the second was a vol-
unteer in the diatom department at the
California Academy of Sciences.

Roger Lewis came to work for me on
a student appointment at the USGS in
1992 and soon became my right-hand
man in both the lab and field. During his
years in the USGS micropaleontology
lab in Menlo Park, he greatly refined our
diatom sample-processing techniques
and always maintained a good attitude,
although the work could be very tedious
at times. His skills in the lab were sur-
passed only by his abilities in the field,
where he maintained the same depend-
able, upbeat attitude and clear excite-
ment for the science. Roger has since
moved on to pursue graduate studies in
marine geochemistry, but I am happy to
thank him here for all his past contribu-
tions to paleoseismology and paleoecol-
ogy in the Pacific Northwest.

Mr. Albert Dell Mahood is a former
high school biology teacher, who in his
retirement worked as a volunteer in the
diatom department at the California
Academy of Sciences in San Francisco. I
spent many afternoons researching dia-
tom taxonomy and ecology with Dell
and depended greatly on his help—and
humor—during this research. As a vol-
unteer for science, he shared knowledge
and experience that helped us to better
understand the results of our diatom
analyses, and I’m pleased to have the op-
portunity to formally thank him at this
time.

My thanks once again to GSA for the
Kirk Bryan Award, and my deepest grat-

itude to the friends and colleagues who
helped Brian Atwater and me to achieve
this honor.

Response by Brian Atwater

In Cascadia paleoseismology, Eileen
Hemphill-Haley is known for careful
and productive work with fossil diatoms.
I hope the Kirk Bryan Award brings this
work the wider recognition it deserves. I
join Eileen in thanking our co-workers.
Many of them were volunteers or low-
paid assistants. Others provided tough
reviews of a long manuscript—or of
three versions of that manuscript, in the
case of an outstanding reviewer. Still
others worked as administrators, ac-
countants, and editors. In the few mo-
ments remaining, let me mention some
of the additional work that contributed to
our report.

Much in Cascadia paleoseismology
depends on analogies with great earth-
quakes at other subduction zones—1944
and 1946 in Japan, 1960 in Chile, 1964
in Alaska. These examples provide a
basis for recognizing earthquakes from
geologic signs of their land-level
changes and tsunamis.

Geophysicists were probably the
first to think about great earthquakes at
Cascadia. Some of them did so as regula-
tors of nuclear power plants in the early
1980s.

By the early 1990s, “marsh jerks”
had identified geologic signs of subsi-
dence and tsunamis at bays and river
mouths in British Columbia, Washing-
ton, Oregon, and California. Later in the
1990s came exact dating of Cascadia’s
most recent great earthquake—to Janu-
ary 26, 1700. This dating, like so much
else in Quaternary geology, is founded
on the radiocarbon time scale. Also es-
sential were ring-width pattern matching
at Cascadia and historical scholarship in
Japan.

These efforts, among others, built the
giant on whose shoulders Eileen and I
stand.

This article was published in

GSA Today, February 2001, p. 44-45.

Reproduced with permission of the publisher,

the Geological Society of America,

Boulder, Colorado USA. Copyright

©2001 Geological Society of America.

Editor’s note: Although this is really the December 2000 issue of Washington Ge-
ology, it is coming out in 2001 because of a lack of staff time, the earthquake, and
other problems. We are doing our best to get back on schedule. Please bear with us.

We have upgraded our website at http://www.wa.gov/dnr/htdocs/ger/. We have
a new look and have been posting information as fast as we can. Washington Geol-
ogy, the publications list, and surface mining info are now available as PDF files.
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ESSENTIAL SCIENCE LEARNING

BENCHMARKS/objectives

1.1 Uses properties to identify,
describe and categorize landforms.

3.2 Understands that science and
technology are human endeavors,
interrelated to each other, to
society. and to the workplace.

GRADE LEVELS

Grades 2–6, answer questions 1–3
Grades 7–12, answer questions 1–6

SUBJECTS

Earth science
Geography
Social science
Mechanics/engineering

CONCEPTS

Interpreting geologic origin of
building materials and methods
of transport and use

SKILLS

Observations; identifying
relationships of rocks to where they
originated; hypothesizing rock
transport.

TIME NEEDED

30–45 minutes (more if field trip)

The small stones which

fill up the crevices have

almost as much to do

with making the fair and

firm wall as the great

rocks; so wise use of spare

moments contributes not

a little to the building up

in good proportions a

man’s mind.

Edwin Paxton Hood

Lesson created by:
Wendy Gerstel
Washington Division of Geology

and Earth Resources
PO Box 47007
Olympia, WA 98405-7007
e-mail: geology@wadnr.gov

Permission is granted to
photocopy these lessons.
There is no copyright.

EARTH CONNECTIONS
Resources For Teaching Earth Science

Earth Connections No. 4

READING A WALL

Have you ever looked at a stone wall and wondered where all the different rocks came
from and what story each might tell? Some stone walls are made of angular rocks, proba-
bly mined from a quarry. Others are made of rounded stones. Observing the differences in
shape, size, color, mineralogy, and other characteristics of the stones in a wall can tell us a
lot about the history of the stones and of the wall. Stone wall builders usually take advan-
tage of the most readily available and, of course, best looking materials. Walls can be
used to support a building or to hold back a hillside or as decorative landscaping (Fig. 1).
Here in western Washington, many of the walls, such as those facing the buildings on the
Capitol Campus, are built of angular stones quarried from the Wilkeson Sandstone near
Tenino. In eastern Washington, many walls are made of basalt because of the abundance
of that rock type there. A wide variety of metamorphic rocks can be found in the walls of
north-central Washington.

In the Puget Sound area, we have an abundance of rounded stones of all sizes, carried
here by glaciers that covered the area about 13,000 years ago. These stones have been
tumbled, scraped, rolled, smoothed, and sculpted by the ice and its meltwater streams.
The more rounded the stones, the longer they were rolled in streams. If they are faceted,
that is, have rounded but distinct faces, they were probably deposited directly by the ice.

Rounded stones do not fit snugly against other stones in a wall and usually need mor-
tar to hold them together. In New England and other areas on glacial deposits, however,
farmers build walls with the stones cleared from their fields. Careful placement of the
stones and annual spring maintenance preserve many miles of these walls built without
any mortar. In Figure 2, the larger stones are at the bottom so they were probably put in
place by hand. The smaller ones could be lifted, so were used in the upper layers.

This lesson will teach observation, analytic, and note-taking skills. It will encourage
the observer to think about geology, history, transportation, engineering, and social sci-

Figure 1. A mortared stone wall in western Washington. Notice that it is thinner and more vertical

than the wall in Figure 2. Photo by Wendy Gerstel.
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ences—and other aspects of wall build-
ing left to the creativity of the partici-
pants.

QUESTIONS

Find your own stone wall and answer
the following questions:

1. What do you notice about the shape
of the individual stones? Are all of
them rounded? Are any of them angu-
lar? Are some of them faceted? Was it
built for decoration, to protect a garden,
or to support a structure?

2. Did the wall builders use mortar?
Why is this important? Could the wall
have been built without it? What is the
mortar made from?

3. What can you say about the color of
the stones? Look closely. Do you rec-
ognize any of them from Washington
State? from Canada? from Idaho? What
do you notice about the mineralogy—
the individual crystals within a stone?

4. How did the stones get here? Are
they local? Were they transported by
glaciers or streams, by trucks or trains?

5. Note the size and relative placement of the stones in the wall.
Is this important? Does it tell you anything about how the wall
was built—by humans or machine?

6. What can you say about the age of the wall? What do the sur-
roundings (the building, the landscaping, the rock source, etc.)
tell you? What condition is the wall in?

DISCUSSION

1. How does geology control/affect the availability of building
materials and how they are used? And how does access to and
transportation of the materials?

2. What can you say about the age of a wall and the use of par-
ticular materials? (How far they were transported? How they
were put into place, etc.?)

3. How might the function of a wall have changed through hu-
man history in an area? In different areas, climates, cultures?

4. What are the advantages/disadvantages of stone walls? As
compared to wooden fences? (Costs, resource availability,
other?)

5. What might cause a wall to degrade or weather (chemical
and mechanical [wind and water] break down)? Which would
be more susceptible to weathering, a rounded wall or a wall of
blocky, tight-fitting stones?

References
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Washington’s Stone Industry—A History, by David A. Knoblach:
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Rocks and Minerals—Student Activity Book, by the National Science
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Sermons in Stone—The Stone Walls of New England & New York, by
Susan Allport with ink drawings by David Howell: W. W. Norton
& Co., 205 p., 1990.

Time worships a well-built wall, for a wall’s stones can wend
through silent woods with an eerie eloquence, suggesting the lives
and labors of settlers long gone. As Susan Allport demonstrates in
this charming book, the stone walls of New England and New York
speak with the voices of Native Americans and Yankee farmers, of
slaves, servants, and children, evoking the past from the elemental
geological struggles of the Ice Age through the fencing dilemmas of
neighbors in the 19th century. Allport’s scaling of these humble but
pervasive walls—who built them? when? why? how?—is a narrative
of fascinating and offbeat attention to the enduring tracks of the
past. [downloaded January 1, 2001, from http://www.
commonreader.com/cgi-bin/rbox/ido.cgi?7248]

Stone Wall Secrets, by Kristine and Robert Thorson: Tilbury House
Publishers, 40 p., 1998. [grades 3-6]

Stone Wall Secrets—Exploring Geology in the Classroom (Teachers’
Guide), by Ruth Deike: Tilbury House Publishers, 80 p., 1998.

Website:

Discovery.com has lessons, weblinks, and vocabulary at http://
school.discovery.com/lessonplans/programs/rocks/index.html. �

Figure 2. A dry-stacked stone wall in Connecticut. Notice the rounded edges of the stones, the

wide base, and the placement of the largest stones at the bottom of the wall. Photo by Eric Gerstel.

Free CD Available to Teachers

“Salmon Recovery Data Viewer: Lower Chehalis Watershed
(WRIA 22)” gives data on the limiting factors that affect the recov-
ery of salmon in the lower Chehalis watershed. For your copy, send
a request by fax to Dave Wischer (360) 902-1790 or J. Roach, As-
sociation of Black Lake Enhancement, at (360) 357-9662 or Lee
Hansmann, Grays Harbor Deputy Director of Community Devel-
opment, at (360) 249-4222.
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ESSENTIAL SCIENCE LEARNING

BENCHMARKS/objectives

1.1 Uses properties to identify,
describe and categorize weathering
processes.

1.2 Understands that interactions
within and among systems cause
changes in matter, energy, and
decomposition.

2.1 Develops abilities necessary to
do scientific inquiry.

GRADE LEVELS

6th–10th grades

SUBJECTS

Earth science

CONCEPTS

Decomposition of rocks:
mechanical and chemical
weathering; observations while
conducting experiments.

SKILLS

Observation; hypothesizing;
analyzing; comparing and
contrasting.

TIME NEEDED

45 minutes (not including
freezing time)

I hear and I forget.

I see and I remember.

I do and I understand.

Ancient Chinese proverb

Lesson created by
Sherry L. Weisgarber

Reprinted with permission from
Ohio Geology, Winter 1997, a
publication of the Ohio Department
of Natural Resources, Division of
Geological Survey, http://www.dnr.
state.oh.us/odnr/geo_survey/.

Permission is granted to
photocopy these lessons.
There is no copyright.

EARTH CONNECTIONS
Resources For Teaching Earth Science

Earth Connections No. 4

DO ROCKS LAST FOREVER?

We think rocks last forever. The boulder we played on in our parents’ front yard when we
were children is still there for our grandchildren to enjoy. The rock steps to the church are
still in use a hundred years later, and the gravestones in the cemetery still mark where our
ancestors were laid to rest. These rocks, to us, have lasted forever. But, if you look
closely, change is taking place.

This change is called weathering. The term weathering refers to the destructive pro-
cesses that change the character of rock at or near the Earth’s surface. There are two main
types of weathering: mechanical and chemical. Processes of mechanical weathering (or
physical disintegration) break up rock into smaller pieces but do not change the chemical
composition. The most common mechanical weathering processes are frost action and
abrasion. The processes of chemical weathering (or rock decomposition) transform rocks
and minerals exposed to water and atmospheric gases into new chemical compounds (dif-
ferent rocks and minerals), some of which can be dissolved away. The physical removal
of weathered rock by water, ice, or wind is called erosion.

Weathering is a long, slow process, which is why we think rocks last forever. In na-
ture, mechanical and chemical weathering typically occur together. Commonly, fractures
in rocks are enlarged slowly by frost action or plant growth (as roots pry into the frac-
tures). This action causes more surface area to be exposed to chemical agents. Chemical
weathering works along contacts between mineral grains. Crystals that are tightly bound
together become looser as weathering products form at their contacts. Mechanical and
chemical weathering continue until the rock slowly falls apart into individual grains.

We often think of weathering as destructive and a bad thing because it ruins buildings
and statues. However, as rock is destroyed, valuable products are created. The major com-
ponent of soil is weathered rock. The growth of plants and the production of food is de-
pendent on weathering. Some metallic ores, such as copper and aluminum, are concen-
trated into economic deposits by weathering. Dissolved products of weathering are car-
ried in solution to the sea, where they nourish marine organisms. And finally, as rocks
weather and erode, the sediment eventually becomes rock again—a sedimentary rock.

Two experiments to illustrate the effects of mechanical and chemical weathering are
presented below.

Plaster and Ice (Mechanical Weathering)

What you need: plaster of paris, water, a small balloon, two empty pint milk cartons
(bottom halves only), a freezer

What to do: (1) Fill the balloon with water until it is the size of a ping-pong ball. Tie
a knot at the end. (2) Mix water with plaster of paris until the mixture is as thick as yogurt.
Pour half of the plaster in one milk carton and the other half in the other. (3) Push the bal-
loon down into the plaster in one carton until it is about ¼ inch under the surface. Hold the
balloon there until the plaster sets enough so that the balloon doesn’t rise to the surface.
(4) Let the plaster harden for about 1 hour. (5) Put both milk cartons in the freezer over-
night. (6) Remove the containers the next day to see what happened.

What to think about: What happened to the plaster that contained the balloon?
What happened to the plaster that had no balloon? Why is there a difference? Which car-
ton acted as a control? Why? How does this experiment show what happens when water
seeps into a crack in a rock and freezes?

What should have happened: The plaster containing the balloon should have
cracked as the water in the balloon froze and expanded. Explain that when the water seeps
into cracks in rocks and freezes, it can eventually break rocks apart.
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A Sour Trick (Chemical Weathering)

What you need: lemon juice, vinegar, medicine droppers,
two pieces each of limestone, calcite, chalk, and quartz

What to do: (1) Put a few drops of lemon juice on one piece
of each of the four rock types. (2) Put a few drops of vinegar on
the other piece of each of the four types. (3) Look and listen
carefully each time you add the lemon juice or the vinegar.

What to think about: What happens when you put
lemon juice on each rock? What happens when you put vinegar
on each rock? Did the lemon juice and vinegar act the same way
on each rock? Why did some of the rocks react differently?
What does this experiment have to do with weathering?

What should have happened: Lemon juice and vine-
gar are both weak acids. The lemon juice contains citric acid
and the vinegar contains acetic acid. These mild acids can dis-

solve rocks that contain calcium carbonate. The lemon juice
and vinegar should have bubbled or fizzed on the limestone,
calcite, and chalk, which all contain calcium carbonate. There
should not have been a reaction on the quartz, which does not
contain calcium carbonate. Explain that water commonly con-
tains weak acids that dissolve rocks containing calcium car-
bonate and other minerals.

Source: Ranger Rick’s Nature Scope:

Geology—The active Earth: National Wildlife Federation, 1988.

LIVE EARTHQUAKE COVERAGE

To see how guinea pigs react to an earthquake, go to
http://www.oinkernet.com/equake.htm.

UPCOMING EVENTS

We would be happy to post your event on our
calendar, both on our website and in Wash-
ington Geology. We need to know the topic,
speaker and affiliation, sponsoring organi-
zation, date, time, place, and who to contact
for more information, preferably a website or
e-mail address. Send this information to
lee.walkling@wadnr.gov.

Discover Washington’s Natural
Resources—A Two-Day Workshop for
Middle and High School Educators

June 20 and 21, 8:00–5:00
Spokane/Dishman Hills

June 26 and 27, 8:00–5:00
Vancouver/CASEE Center

Registration deadline is June 1, 2001.
http://www.wa.gov/dnr/
teacherworkshop@wadnr.gov
360-902-132

2001 Northwest Regional Meeting
of the National Association of
Geoscience Teachers

June 21–24; Bellevue, Washington

http://www.btia.net/nagt/

Geological Society of America and
Geological Society of London Global
Meeting: Earth System Processes

June 24–28; Edinburgh, Scotland

http://www.geosociety.org or
http://www.geolsoc.org.uk

Geological Society of America
GeoVentures Field Trip:
Geology of Glacier National Park

July 14–19; Columbia Falls, Montana

http://www.geosociety.org/meetings/gv/
gh012.htm

Crowding the Rim, 2001: International
Geohazards Summit

August 1–3; Stanford University, California

http://www.crowdingtherim.org/

Tobacco Root Geological Society 26th
Annual Field Conference

August 2–5; Wallace, Idaho

http://trgs.org/conference.htm

International Tsunami Symposium 2001

August 7–10; Seattle, Washington

http://www.pmel.noaa.gov/its2001

Northwest Geological Society (field trip)

September, TBA

Southern Coast Mountains of British
Columbia—Murray Journeay

http://www.scn.org/tech/nwgs/index.htm

National Emergency Management
Association Annual Conference

September 8–12; Big Sky Resort, Montana

thembree@csg.org
http://www.nemaweb.org

Mine Fill 2001: International Symposium
on Mining with Backfill

September 17–19; Seattle, Washington

http://www.smenet.org/meetings/
Minefill2001.cfm

Washington State Ground Water
Association Fall Convention

September 28–29; Spokane, Washington

http://www.wsgwa.org/

Association of Engineering
Geologists/American Institute
of Professional Geologists
2001 Annual Meeting

Sept. 29–Oct. 5; St. Louis, Missouri

http://www.aegweb.org/
http://www.aipg.org/

Canadian Dam Association 2001
Annual Conference

September 30–October 4;
Fredericton, NB, Canada

cda2001@engineering.ca
http://www.cda.ca/cda2001

American Geological Institute’s
Earth Science Week

Oct. 7–13

http://www.earthscienceworld.org/week/
http://www.usgs.gov/earthscience/

Northwest Geological Society (meeting)

The state-of-affairs at the state survey—Ron
Teissere of the Washington Division of
Geology and Earth Resources

October 9; 7:30; University Plaza Hotel
NE 45th St., Seattle, Washington

http://www.scn.org/tech/nwgs/index.htm

Western States Seismic Policy Council
Annual Conference

October 21–24; Sacramento, California

wsspc@wsspc.org or http://www.wsspc.org

Geological Society of America Annual
Meeting: A Geo-Odyssey

November 1–10; Boston, Massachusetts

meetings@geosociety.org
http://www.geosociety.org

International Association of Emergency
Managers Annual Conference

November 3–7; Riverside, California

iaem@aol.com or http://www.iaem.com

Northwest Mining Association
Annual Meeting

December 3–7; Spokane, Washington

(509) 624-1158 or http://www.nwma.org

Association of Ground Water Scientists
and Engineers Annual Meeting

December 7–8; Nashville, Tennessee

http://www.ngwa.org/education/cfpnat01.
html �
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A River Runs By It

Alma Hale Paty

As the Columbia River flows through
Washington State to the Pacific

Ocean, it meanders close to a small but
vibrant museum known as the Columbia
River Exhibition of History, Science and
Technology (CREHST). Located in the
city of Richland, part of the Tri-Cities
area encompassing the cities of Pasco
and Kennewick, CREHST houses a di-
verse yet fascinating array of materials
and exhibits aimed at educating the visi-
tor about the natural and man-made his-
tory—and future—unique to this region.

Steered by the slogan “Where
Knowledge Flows Through Time and
Technology,” CREHST’s exhibits flow
from those recounting the geologic his-
tory of the Pacific Northwest to those
documenting the area’s human history—
rich in an area that served as a secret,
government-sponsored city supporting
the United States’ research into nuclear
energy and defense.

Ice-age floods, rocks, fossils, fish
and animals all vied for my attention.
The tour begins with “The Great Floods:
Cataclysms of the Ice Age,” a video doc-
umenting the latest in geologic thinking
about the unusual landforms of Wash-
ington, Idaho and Montana.

It is thought that during the ice age of
15,000 years ago, an ice dam on the
Clark Fork River in Montana created
Lake Missoula, 2000 feet deep and esti-
mated to be as large as a present-day
Great Lake. Its faint shoreline is still vis-
ible today. When the ice dam broke, the
lake drained in 48 hours, with the water
rushing through present-day Washing-
ton to the Pacific at 65 miles per hour,
carving out 50 cubic miles of earth. Deep
channels known as coulees were formed,
resulting in a tell-tale, braided landscape
dotted with transported basalt blocks 30
feet in diameter.

Although geologist J Harlan Bretz
first postulated the idea of ice age floods
in 1923, it was not until the advent of ae-
rial photography that the geologic evi-
dence of 30-foot-high, two-mile-wide
ripple marks came to light. The video
helped me understand the topography I
saw driving from Spokane to Richland.

Continuing the geologic story, a per-
manent exhibit at CREHST features the
geologic history of the Northwest, with a
mural on the “Cascade volcanic activity

and its relationship to the Northwest
junction of the continental and oceanic
plates.” Offering a quick Geology 101
lesson, 15 numbered, hands-on rock
samples are situated below the mural. I
could match the rocks to the numbers on
the mural and thus learn where and how
the rocks were formed.

Appropriately placed next to this dis-
play is an active seismic monitoring sta-
tion. Because this area of the country is
prone to earthquakes, this station dupli-
cates the monitoring taking place at the
Hanford nuclear reservation. (I was
comforted by the low activity it re-
corded.)

Continuing to the museum’s lower
level, I moved from rocks into biology.
Lining the stairwell are models, de-
signed by artist Jim Martin, of 35 of the
Columbia River’s fish species, including
Lamprey, King Chinook Salmon, Black
Crappie and Dace.

And moving the visitor’s attention to
larger species, two dioramas form a

bridge from natural history to human
history: a diorama of stuffed animals and
birds local to this dry area of southeast
Washington and another of the Native
Americans who first lived in the area.

Most of the remaining exhibits focus
on the lives and culture surrounding the
secret Hanford Engineering Works. Es-
tablished during the height of World
War II, the Tri-Cities area was home to
51,000 construction workers and engi-
neers. These workers helped build the T-
plant, a chemical separation plant that is
the crucial third step in the production of
radioactive plutonium. CREHST exhib-
its highlight the culture of secrecy and
control that permeated this area.

One exhibit records how Hanford’s
workers donated a day’s wages to sup-
port the construction of a Boeing B-17,
the Flying Fortress. Christened on July
12, 1944, the Hanford-supported plane
was named Day’s Pay.

A result of 40-plus years of pluto-
nium production is the millions of gal-
lons of radioactive chemical waste
stored in the center of the 560-square-
mile Hanford site.

Another series of panels highlights
the ongoing environmental restoration
of the Hanford site taking place under
the 1989 Tri-Party Agreement among
the Department of Energy, the Environ-
mental Protection Agency and the State
of Washington.

Several objects and exhibits were not
on display only because the current
housing of CREHST is temporary. In
keeping with its mission statement of
preserving “the future of science and
technology in the Columbia Basin,”
CREHST plans to build and move to a
new facility within the next five years. It
will be near the flowing Columbia River,
where knowledge flows through time and
technology.

Paty is founder and president of A Capital

Resource, a Washington-based consulting

firm specializing in mineral resource is-

sues and education.

Reprinted with permission from

Geotimes, October 2000,

The American Geological Institute,

Copyright 2000.

The

Columbia

River

Exhibition

of History,

Science and

Technology

The Columbia River Exhibition of
History, Science and Technology is at
95 Lee Boulevard in Richland, WA
99352.

Hours: 10 a.m. to 5 p.m., Monday
through Saturday. Noon to 5 p.m.,
Sunday. Closed New Year’s Day,
Easter, Thanksgiving and Christmas.

Phone and website: (509) 943-9000 and
www.crehst.org.

Details
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Selected Additions to the Library of the
Division of Geology and Earth Resources

May, 2000 through January, 2001

THESES

Bart, M. L., 1999, Sedimentary and geomorphic evolution of a portion
of the North Fork Toutle River, Mount St. Helens National Vol-
canic Monument, Washington: Washington State University
Master of Science thesis, 121 p.

Bender, B. P., 1998, The Holocene geomorphic and stratigraphic evo-
lution of Cape Shoalwater, Washington: Western Washington
University Master of Science thesis, 158 p.

Bush, K. R., 1997, A comparison of archaeological data recovery
techniques in the Skagit River valley, southwestern British Co-
lumbia: Western Washington University Master of Arts thesis,
58 p.

Couchman, Elizabeth, 2000, A seismic risk assessment of Seattle,
Washington using a geographical information system: University
of Edinburgh Masters of Research [thesis], 130 p.

Feehan, J. G., 1997, Finite strain and fluid flow in accretionary
wedges, northwest Washington State: Yale University Doctor of
Philosophy thesis, 172 p.

Gelinas, Sharon, 2000, An exploratory statistical analysis of the
ground water in the Abbotsford–Sumas aquifer: Western Wash-
ington University Master of Science thesis, 184 p.

Gorton, Laurie, 2000, The stratigraphy, petrography and geochemis-
try of the Mount Tebo area, southern Olympic Mountains, Wash-
ington: University of Puget Sound Bachelor of Science thesis,
51 p., 1 plate.

Hartnett, H. E., 1998, Organic carbon input, degradation and preser-
vation in continental margin sediments—An assessment of the
role of a strong oxygen deficient zone: University of Washington
Doctor of Philosophy thesis, 150 p.

Henton, J. A., 2000, GPS studies of crustal deformation in the north-
ern Cascadia subduction zone: University of Victoria Doctor of
Philosophy thesis, 169 p.

Herb, A. A., 2000, Holocene stratigraphy and sediment volumes for
the Columbia River littoral cell, Pacific Northwest, USA: Port-
land State University Master of Science thesis, 187 p.

Hutter, I. L., 1997, The Wallula fault zone—A study of the structure
and tectonic history of a portion of the Olympic–Wallowa linea-
ment: Western Washington University Master of Science thesis,
181 p., 3 plates.

Kiessling, M. A., 1998, Provenance and stratigraphic correlation of
the mid-Cretaceous Pasayten Group, northern Washington and
Manning Provincial Park, British Columbia: Idaho State Univer-
sity Master of Science thesis, 1 v., 1 plate.

Lawrence, D. B., 1936, Some features of the vegetation of the Colum-
bia River gorge: Johns Hopkins University Doctor of Philosophy
thesis, 40 p.

Manson, G. K., 1995, Modeling sand and gravel deposits and aggre-
gate resource potential, Vancouver Island, British Columbia: Uni-
versity of Victoria Honours Bachelor of Science thesis, 1 v.

Meyer, S. E., 1999, Depositional history of pre-late and late Wiscon-
sin outburst flood deposits in northern Washington and Idaho—
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USGS Earth Science Corps Marks Anniversary

The U.S. Geological Survey’s Earth Science Corps, which
this year marks its sixth anniversary as a research resource

for the National Mapping Program, is reaching out to other dis-
ciplines and bureaus to expand the types of support services it
provides.

The corps began in 1994 with 20 people and now has a na-
tionwide membership of 2,500 volunteers who work in all 50
states as well as in the U.S. territories of Guam, Puerto Rico,
and the U.S. Virgin Islands.

A part of the USGS Volunteer for Science Program, the
corps is unique because almost all of its members work inde-
pendently at their own pace and in their own communities,
rather than in an office with a USGS employee. Following de-
tailed instructions, the volunteers’ primary activity has been
annotating topographic maps with revised information. The
work also involves name and boundary research and, because
of the nature of that research, community relations.

“Despite our cartographic orientation, our widely diverse
members have varied backgrounds, including science, engi-
neering, and environmental studies,” said corps founder
Melvin Ellis, a 33-year veteran cartographer with the USGS
National Mapping Program. “Therefore, we encourage other
USGS disciplines, such as biology, geography, geology, and
hydrology, as well as other Interior bureaus, to tap our volun-
teer resources when they have a specific need.”

Ellis is assisted by two experienced coordinators, Richard
Pirtle, for the eastern states, and Robert Elsloo, for the western
states, plus a small volunteer staff at USGS headquarters in
Reston, Virginia. In addition to their key cartographic duties at
Rolla, Missouri, and Lakewood, Colorado, Pirtle and Elsloo
devote part of their workweek to receiving and evaluating data
submitted by corps members and responding to technical ques-
tions from volunteers.

Mapping projects are currently underway with Corps’ sup-
port in California, Louisiana, Pennsylvania, Texas, and West
Virginia. Members of the corps recently collected field data for
a 70-map revision project to support the 2002 Winter Olympics
in the Salt Lake City area. They also contributed to a near-state-
wide project in Hawaii.

The USGS National Mapping Program has over 54,000
maps of the lower 49 states. About 3,000 of those maps are cur-
rently assigned to corps members for revision, so there is
plenty of work for additional members. If you would like to
join the Earth Science Corps, call 800-254-8040; e-mail
escorps@usgs.gov; or write to the Earth Science Corps at Mail
Stop 513, USGS, Reston, VA 20192.

from People, Land & Water, U.S. Department of the Interior,

October/November, 2000, vol. 7, no. 7

DGER Is Now a USGS Earth
Science Information Center!

In November 2000, the Washington Department of Natural Re-
sources was designated the newest U.S. Geological Survey lo-
cal Earth Science Information Center (ESIC).

Local ESICs are commonly state geological surveys or ma-
jor universities. Through this partnership, the USGS improves
public access to local geologic information across the nation.
In turn, the local organizations get better access to USGS mate-
rials and better communication with each other. (For more in-
formation on ESICs, see http://mapping.usgs.gov/esic/esic1.
html and http://ask.usgs.gov/.)

All local ESICs provide information about the geology of
their regions to the public. That has always been a function of
the DNR Division of Geology and Earth Resources, both
through the Division’s library and its staff. Many local ESICs
sell various USGS products, especially the topographic maps.
The DNR Photo and Map Sales unit has always been a sales
outlet for those materials and will continue in that role.

Our librarian, Connie Manson, attended the November
2000 ESIC meeting in Menlo Park, Calif. There, she learned
about programs at the other local ESICs in the western U.S.—
what they’re doing about print and electronic publishing, con-
solidated book and map sales, outreach to teachers and the pub-
lic, their websites, and more. She learned about the USGS’s
current plans for issuing books, open-files, and maps, both
electronically and in print, and about new products (like the
customizable USGS topographic maps available through the
National Geographic Society’s map kiosks).

We are pleased with this new designation and with the ad-
vantages it gives us—new tools to make our work more in-
formed and efficient and increased communication with our
peers.

PBS PLANS EVOLUTION SERIES

A new “Evolution” series is planned by PBS this fall. They
now have a website at http://www.pbs.org/wgbh/evolution/.
There will be tie-ins with a variety of science groups nation-
wide.
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STAFF NEWS
State Geologist Ray Lasmanis attended the
Tucson Gem and Mineral Show while on va-
cation in February. Also in February, he took
part in two Department of Licensing Geolo-
gist Advisory Committee meetings preparing
draft WACs, and in early March, a meeting of
the Department of Natural Resources Infor-
mation Technology Board.

Geologists Chuck Gulick, DNR Northeast
Region, and Dave Knoblach, University of
Washington, have authored a paper entitled
“Industrial minerals in Washington State”.
Dave will be presenting the paper at the 37th
Forum on the Geology of Industrial Minerals
2001 in May in Victoria, BC. This is a presti-
gious international conference.

Geologist Bill Lingley presented a paper to
the Northwest Geological Society on the
structural geology of the Olympic Moun-
tains. His coauthors were Richard Stewart
(University of Washington), Steve Boyer
(Charles Wright Academy), and Leslie
Lingley (Leslie Geological Services). Ling-
ley and geologist Andy Dunn presented the
results of the sand and gravel inventories of
Whatcom and Yakima Counties to their re-
spective governments.

Senior Librarian Connie Manson is the
2001 President of the Northwest Geological
Society. She edited the February and April
2001 issues of the Geoscience Information
Society’s GIS Newsletter and attended the
Geological Society of America’s two-day
Publications Committee meeting in Boulder,
Colo., as the GIS representative. In April, she
went to Washington, DC, as an invited grant
reviewer for the Dept. of Commerce, and on
May 23, she did a Brown Bag at the Univer-
sity of Washington Dept. of Geological Sci-
ences on geoscience information sources.

Geologist Pat Pringle, our tree-ring and vol-
cano expert, was interviewed by Tacoma

News Tribune reporter Rob Tucker, whose
article on the Fife buried forest appeared in
the paper on Martin Luther King Day and was
also released on the AP wire. On the same
day, as he worked on tree ring samples in his
backyard, Pat got a call from KING 5 TV
news director Chris Alsop, who wanted Pat to
meet reporter Chris Ingalls in Fife for an in-
terview. The story aired at 11:00 pm and also
the next day. The story was mentioned on
KIRO radio, both when Pat was driving up to
Seattle to be interviewed and returning.

The AP story came out all over, including
in almost all of the regional papers. “The
story has apparently cloned itself because
people have been telling me all day that they
heard it on National Public Radio,” Pat said.

On January 16, Pat attended a meeting of
the Mount Rainier Volcanic Hazards Work
Group in Orting, where they discussed the
upcoming Mount Rainier eruption scenario
exercise at the Mount Weather facility in
Maryland and the ongoing educational ef-
forts of the group. He and Kevin Scott of the
USGS led the group on a field trip to Mud
Mountain Dam to inspect lahar deposits
there.

Pat and Carolyn Driedger of the USGS
then drove to Packwood for a town meeting
on Mount Rainier volcanic processes, his-
tory, and hazards. KIRO 7 news covered the
meeting, as well as several newspapers. More
than 200 people attended.

On January 17, Pat went with State Sena-
tor Debbie Regala and Tim Farrell of Senator
Jim Kastama’s office to examine buried trees
in Fife. They then drove to Orting to look at
trees exposed in developments there and at
Ptarmigan Elementary School.

Later that week, he was interviewed via
telephone by Diane Evans of the East County
Journal in Morton.

On February 22, Pat, along with Mount St.
Helens National Volcanic Monument scientist
Peter Frenzen, put up an exhibit about the
volcano at the request of Mark Plotkin, the Di-
rector of Tourism for Cowlitz County, for the
annual meeting and banquet of the Cowlitz–
Wahkiakum County Council of Governments.

On March 26, Pat attended a meeting of the
Mount Baker–Glacier Peak Volcanic Hazards
Working Group at the Snohomish County De-
partment of Emergency Management. They
discussed printing of the response plan and up-
coming exercises and presentations to county
governments and communities about volcanic
processes and the history of the volcanoes. On
March 27, Pat led a field trip for the group to
examine deposits from Glacier Peak volcano.

Geologist Tim Walsh gave talks to the Office
of the Administrator of the Courts, the Emer-
gency Management Council, Henderson
House Museum, the Tumwater Planning Com-
mission, the Cascadia Region Earthquake
Workgroup (CREW), the Northwest Geologi-
cal Society (on tsunamis), the Assistant Direc-
tors for Administration and Management, a
USGS–DOGAMI earthquake hazard mapping
workshop, the Black Lake Neighborhood As-
sociation, and the Panorama City chapter of
AARP. At the Seismological Society of Amer-
ica meeting in San Francisco, he displayed Di-
vision posters on ground failures in southern
Puget Sound (Walsh and many others) and
damage to the Natural Resources Building
(Lasmanis).

Geologist Karl Wegmann addressed the Ka-
lama Urban Growth Steering Committee on the
status of landslide hazard mapping within the

Northwest Stone Sculptors Association

Northwest Stone Sculptors Association (NWSSA) is a non-
profit organization dedicated to the education for and pro-

motion of stone sculpture in the Pacific Northwest. Although
most of its members hail from Oregon, Washington, Idaho, and
British Columbia, about 75 percent are Washington Staters. Of
its 200 members, three are geologists. About 5 to 10 percent are
full-time artists; others either consider it a serious second pro-
fession or a hobby.

If there is one thing all stone sculptors share, it’s a love of
the medium. At one time in its history, NWSSA members de-
bated a proposal to drop the word ‘stone’ from the moniker in
order to appeal to a wider group of artists. A resounding affir-
mation of ‘stone’ solidified the purpose of the association.

NWSSA members regularly work steatite, alabaster, sand-
stone, siltstone, black chlorite, brucite, slate, limestone, mar-
ble, basalt, granite, and jade. Similar to geologists, the artists
tend to be ‘hard rockers’ or ‘soft rockers’; few cross the line,
although marble is a transition stone.

Three symposia are held each year (two in Washington and
one in Oregon) with from 30 to 90 in attendance. At these gath-

erings, novices mix with professionals, and educational in-
struction is the feature. Most important of all, it’s a chance to
buy stone and tools that are not available on the local market.
Three stone vendors and one tool vendor bring their wares, and
the artists take them home. The three stone vendors don’t com-
pete so much as compliment each other, so all stone needs are
met.

The remaining two symposia for this year are at Camp
Brotherhood, Mt. Vernon, Washington, from July 13 to 22,
2001, and at Silver Falls State Park, Oregon, from September
25 to 29, 2001. Participants will have access to air compres-
sors, generators, water, and limited covered working space, as
well as lodging, three meals daily, and all workshops.
Workshop instructors present at designated times; the rest of
their time is dedicated to their own work.

For more information, call or e-mail NWSSA at (888) 237-
0677 or NWSSA@world.att.net. The NWSSA website can be
viewed at www.scn.org/arts/stonesculpt. �
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proposed Kalama Urban Growth Bound-
ary in October. In January, he presented a
talk to natural resource staff of Olympic
National Park concerning the geologic
evolution of the Olympic Mountains. In
February, he gave a talk to citizens of
Mercer Island on landslide hazards in the
Puget Sound area.

New Staff

Betty Avila is our temporary Office As-
sistant (OA), while our permanent OA is
working as an Office Assistant Senior in
our office. She is an asset to our division.
Betty has worked in clerical support for
the Department of Health and the Com-
missioner of Public Lands office. She has
extensive experience as an environmental
specialist and is actively pursuing a career
in that field.

Diane Frederickson has been hired as a
temporary Office Assistant to work on re-
cords retention in our office. She has
jumped in and (under supervision) started
sorting, recycling, and shredding and is
being trained to use the records retention
schedule. We are very happy to have Di-
ane in our office for as long as we can keep
her. �
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HOW TO FIND OUR MAIN OFFICE

Division of Geology and Earth Resources
Natural Resources Bldg., Room 148
1111 Washington St. S.E.
Olympia, WA 98501

(See p. 2 for our mailing address.)
Visitor parking (VP) is available on
Level P1 at $.50/hour. Use the
Washington St. entrance.

American Geophysical Union’s
Position Statement on Meeting
the Challenges of Natural Hazards

Natural hazards (earthquakes, floods, hurricanes, landslides,
meteors, space weather, tornadoes, volcanoes, and other geo-
physical phenomena) are an integral component of our dy-
namic planet. These can have disastrous effects on vulnerable
communities and ecosystems. By understanding how and
where hazards occur, what causes them, and what circum-
stances increase their severity, we can develop effective strate-
gies to reduce their impact. In practice, mitigating hazards re-
quires addressing issues such as real-time monitoring and pre-
diction, emergency preparedness, public education and
awareness, post-disaster recovery, engineering, construction
practices, land use, and building codes. Coordinated ap-
proaches involving scientists, engineers, policy-makers, build-
ers, lenders, insurers, news media, educators, relief organiza-
tions, and the public are therefore essential to reducing the ad-
verse effects of natural hazards.

In order to reduce our vulnerability to natural hazards,
AGU strongly endorses:

� fundamental research on Earth and space and
monitoring of natural hazards,

� dissemination of the relevant results to the public,
especially vulnerable communities, and

� implementation of multidisciplinary efforts needed to
apply effective mitigation strategies worldwide.

Adopted by AGU Council, December 1996,

revised and reaffirmed December 2000

Used with permission.

FINAL BILL REPORT:
Geologist Licensing (SB 5206)

Brief Description: Modifying geologist licensing provisions.

Sponsors: Senators Gardner, Prentice, Winsley, and Fraser by
request of Department of Licensing; Senate Committee on La-
bor, Commerce and Financial Institutions; House Committee
on Commerce and Labor.

Background: A law regulating the profession of geology was
enacted in 2000. Provisions of the law included the creation of
a geologist licensing board, specific requirements for licensure
as a geologist, and penalties for practicing geology without a li-
cense. The effective date of this law is July 1, 2001.

Summary: Three separate effective dates for the law are speci-
fied.

� April 1, 2001, is the effective date for provisions of the
law, including the creation of the geologist licensing
board, a geologist’s account at the Office of the State
Treasurer, and the director’s power to adopt rules to carry
out the provisions of the law.

� July 1, 2001, is the effective date for provisions of the law,
including requirements for licensure, administration of
examinations and certificates, and criteria and penalties for
unprofessional conduct.

� July 1, 2002, is the effective date for the provision that
practicing geology without a license is a Class 1 civil
infraction, punishable by a maximum $250 fine.

Votes on Final Passage: Senate 44–0; House 86–0

Effective: Immediately
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New Releases

Interpreted geologic history of the Sedro-Woolley North and

Lyman 7.5-minute quadrangles, western Skagit County, Wash-

ington, Open File Report 2000-1, by Joe D. Dragovich, David K. Nor-
man, and Garth Anderson. 71 p., 10 figs., 1 plate. $2.78 + .22 tax
(Wash. residents only) = $3.00.

Bibliography of the geology and mineral resources of Washington,

1991–1995, Open File Report 2000-2, compiled by Connie J. Manson.
192 p. $5.56 + .44 tax (Wash. residents only) = $6.00. Supersedes

OFRs 92-4, 93-2, 94-15, and 96-6.

Mining regulations in Washington, Open File Report 2000-3, by
David K. Norman. 22 p. Free. Supersedes OFR 94-4.

Geologic map of the Forks 1:100,000 quadrangle, Washington,
Open File Report 2000-4, compiled by Wendy J. Gerstel and William
S. Lingley, Jr. 36 p., 5 figs., 2 plates, scale 1:100,000. $6.02 + .48 tax
(Wash. residents only) = $6.50.

Geologic map of the Bellingham 1:100,000 quadrangle, Washing-

ton, Open File Report 2000-5, by Thomas J. Lapen. 36 p., 3 figs., 2
plates, scale 1:100,000. $6.02 + .48 tax (Wash. residents only) =
$6.50.

Geologic map of the Anacortes South and La Conner 7.5-minute

quadrangles, western Skagit County, Washington, Open File Re-
port 2000-6, by Joe D. Dragovich, Minda L. Troost, David K. Nor-
man, Garth Anderson, Jason Cass, Lea A. Gilbertson, and Donald T.
McKay, Jr. 4 plates, scale 1:24,000. $12.04 + .96 tax (Wash. residents
only) = $13.00.

Geologic map of the Carlsborg 7.5-minute quadrangle, Clallam

County, Washington, Open File Report 2000-7, by Henry W.
Schasse and Karl W. Wegmann. 27 p., 5 figs., 2 plates, scale 1:24,000.
$6.48 + .52 = $7.00.

Reconnaissance investigation of sand, gravel, and quarried bed-

rock resources in the Bellingham 1:100,000 quadrangle, Washing-

ton, Information Circular 91, by Jeffrey S. Loen, William S. Lingley,
Jr., Garth Anderson, and Thomas J. Lapen. 2001. 45 p., 1 plate, scale
1:100,000. $4.17 + .33 tax (Wash. residents only) = $4.50.

Reconnaissance investigation of sand, gravel, and quarried bed-

rock resources in the Yakima 1:100,000 quadrangle, Washington,
Information Circular 92, by Kevin D. Weberling, Andrew B. Dunn,
and Jack E. Powell. 2001. 34 p., 1 plate, scale 1:100,000. $4.17 + .33
tax (Wash. residents only) = $4.50.

Tsunami hazard map of the southern Washington coast—

Modeled tsunami inundation from a Cascadia subduction zone

earthquake, Geologic Map GM-49, by Timothy J. Walsh, Charles G.
Caruthers, Anne C. Heinitz, Edward P. Myers III, Antonio M.

Baptista, Garnet B. Erdakos, and Robert A. Kamphaus. 2000. 12 p., 1
plate, scale 1:100,000. $3.71 + .29 tax (Wash. residents only) = $4.00.

Digital Bibliography of the geology and mineral resources of

Washington State, 1798–2000, Digital Report 1, 2001 edition, com-
piled and edited by Connie J. Manson. Contains the citations and in-
dexing for more than 35,000 items and includes both items listed in
our printed bibliographies and those non-Washington items held in
our library. CD-ROM with search software; runs on Windows 3.1 or
higher. $0.92 + .08 tax (Wash. residents only) = $1.00.

(Our address and phone number are on p. 2. Orders must be prepaid.

Make check or money order payable to the Department of Natural Re-

sources. Taxes apply to Washington residents only. Please include

$1.00 for postage and handling of orders.)

Washington Geologists in the News

Kathy Goetz Troost of the University of Washington Department of
Geological Sciences was elected a Fellow of the Geological Society of
America on Nov. 13, 2000.

Weldon Rau has just published “Surviving the Oregon Trail, 1852;
As Told by Mary Ann and Willis Boatman and Augmented with Ac-
counts by Other Overland Travelers”. This book includes firsthand ac-
counts of the journey to Oregon in the words of a young married cou-
ple, Mary Ann and Willis Boatman. Rau, who lives in Olympia, is now
retired but worked as a research geologist for the U.S. Geological Sur-
vey and the Washington Division of Geology and Earth Resources. He
is the great grandson of Puyallup pioneers Mary Ann and Willis Boat-
man. The book is the culmination of 15 years of extensive field inves-
tigations and archival/library study. In addition to historical informa-
tion, Rau also provides geological insights. Available from WSU
Press at http://www.wsu.edu/wsupress/.

Wes Wehr is the author of “The Eighth Lively Art—Conversations
with Painters, Poets, Musicians, and the Wicked Witch of the West”.
An accomplished artist and musician himself, Wehr was a friend and
often a confidant of many of the painters, poets, and musicians who
lived or worked in the Northwest in the 1950s and 60s. Wehr profiles
painters Mark Tobey, Pehr Hallsten, Helmi Juvonen, Guy Anderson,
and Morris Graves; poets Theodore Roethke, Richard Selig, Elizabeth
Bishop, and Leonie Adams; musicians Ernest Bloch and Berthe Poncy
Jacobson; photographer Imogen Cunningham; gallery owner Zoe
Dusanne; philosopher Susanne Langer; and actor Margaret Hamilton
(famous for her role as the Wicked Witch of the West in The Wizard of
Oz). Wehr is affiliate curator of paleobotany at the Burke Museum of
Natural History and Culture, University of Washington. Available
from University of Washington Press at http://www.washington.edu/
uwpress/.


